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Abstract: 

Modern financial systems including electronic trading, risk recalculation, and compliance screening 

demand ultra-low latency, high throughput, and rigorous governance, providing fast and dependable 

service to service communication without sacrificing auditability. gRPC supplies a unified Remote 

Procedure Call (RPC) fabric built on HTTP/2 multiplexing together with compact Protocol Buffers 

(Protobuf) messages and native streaming that simplifies these workflows relative to ad hoc 

Representational State Transfer (REST) JavaScript Object Notation (JSON) endpoints [1] [2] [3]. This 

paper gives a practical implementation focused view of adopting gRPC across four representative 

financial interaction patterns (real time market data fan out, bidirectional order exchange, parallel risk 

queries, compliance enrichment fan out) and couples them with governance measures (descriptor 

registry, additive only schema evolution, short lived Mutual Transport Layer Security (mTLS) 

identities, structured audit logs mapped to regulations) [4] [5] [6]. 

 

Keywords: gRPC, HTTP/2, finance, streaming, Protobuf, microservices, governance, compliance, audit 

logging. 

 

I. INTRODUCTION 

In modern finance where microseconds influence spread capture, inline risk checks must not stall execution, 

and regulatory/KYC/AML microservices must interpose without bloating latency where gRPC can be 

leveraged as the unifying, low-latency communication backbone across trading, analytics, and compliance 

domains.  

Legacy REST JSON platforms in capital markets often incur avoidable overhead such as verbose payloads, 

per request authentication round trips, and polling for updates [1] [2]. As workloads expand (market data 

dissemination, order lifecycle management, intraday risk, sanctions and Know Your Customer (KYC) checks) 

duplication of cross cutting concerns (authentication, logging, tracing) increases latency variance and 

operational cost [7]. gRPC offers a cohesive alternative because one connection per peer pair carries many 

logical calls, streaming eliminates polling, and an Interface Definition Language (IDL) enforces consistent 

types across polyglot teams [2] [3]. Existing comparisons frequently focus on raw percentile charts, but fewer 

combine architectural guidance with governance and compliance details [5] [6]. This paper fills that practical 

gap by describing adoption patterns, qualitative performance gains, and control mechanisms without requiring 

readers to reproduce a heavy benchmarking apparatus. 

 

Contributions: 

1. Finance oriented overview of gRPC primitives mapped to four concrete workload archetypes. 

2. Qualitative performance and efficiency comparison with REST and briefly GraphQL and Thrift 

covering connection reuse, message compactness, reduced client polling, and simplified error handling. 

3. Reference migration architecture (gateway and gRPC Web proxy and service tier) highlighting 

observability and security insertion points. 
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4. Lightweight governance framework including descriptor registry policy, additive schema evolution 

guardrails, short lived mTLS identity, and audit log field mapping to Markets in Financial Instruments 

Directive II (MiFID II) and Securities and Exchange Commission (SEC) retention needs [6] [8]. 

5. Practical adoption playbook including phased dual run, translation layer rollout, schema discipline 

checklist, and operational guardrails (timeouts, retries, deadlines, health checks) [2] [4]. 

6. Challenges and mitigations including browser limitations, load balancing skew, binary introspection, 

and schema drift. 

 

II. RELATED WORK AND BENCHMARK SYNTHESIS 

The following table defines key acronyms used throughout this paper: 

 

TABLE I. TERMINOLOGY & ACRONYMS 

Acronym Definition 

gRPC Google Remote Procedure Call 

HTTP/2 Hypertext Transfer Protocol v2 

SSE Server-Sent Events 

mTLS Mutual TLS Authentication 

MiFID II Markets in Financial Instruments Directive II 

 

A. HTTP 2 Multiplexing and Connection Reuse: A single TLS connection can handle multiple concurrent 

RPCs, which smooths out spikes in connection rates during market opens and significantly reduces CPU 

overhead per request. By leveraging HTTP 2’s multiplexing capabilities, services avoid the costly setup and 

teardown of individual connections for each call, leading to more efficient resource utilization and lower 

latency variance [9]. This continuous connection model also minimizes socket churn, enabling more stable 

and predictable performance under heavy load. 

B. Compact Binary Protocol: Protocol Buffers serialize financial payloads such as price ticks, order 

acknowledgments, and risk vectors into a compact binary format that is both faster to parse and smaller on 

the wire than JSON. In microbenchmarks, Protobuf messages consume up to 70 percent fewer bytes and 

reduce CPU parsing time by approximately 50 percent compared to equivalent JSON payloads [10]. This 

efficiency gain translates directly into lower end-to-end latency and reduced bandwidth consumption, which 

are critical for high-frequency trading and real-time analytics. 

C. Streaming Primitives: gRPC’s streaming primitives allow services to establish long-lived channels for 

continuous data exchange. Server streaming enables real-time market data feeds to push price and depth 

updates without client-side polling. Bidirectional streaming extends this model to interactive scenarios such 

as order submission and execution reporting, where both client and server can send messages independently. 

Built-in flow control mechanisms ensure that neither side becomes overwhelmed, maintaining backpressure 

and protecting services from overload [11]. 

D. Strong Contracts and Polyglot Tooling: By defining service contracts in “.proto” files, gRPC enforces 

strong typing and consistent interfaces across languages. These definitions generate native client and server 

stubs in Java, C++, Go, Python, .NET, and Node JS, eliminating handwritten boilerplate code and ensuring 

compatibility across heterogeneous environments. This polyglot approach accelerates development, reduces 

integration errors, and keeps distributed teams aligned on Application Programming Interface (API) 

specifications [12]. 
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TABLE II. CAPABILITY MATRIX OF LEADING API PROTOCOLS 

CAPABILITY REST GRPC GRPC-WEB GRAPHQL THRIFT 

UNARY Yes Yes Yes Yes Yes 

SERVER STREAMING Partial 

(Server‐

Sent 

Events 

(SSE)) 

Yes Yes (limited) Subscriptions 

(server → 

client) 

Partial* 

CLIENT STREAMING No Yes No No Partial* 

BIDIRECTIONAL 

STREAMING 

No Yes No No Partial* 

STRONG TYPING 

(IDL) 

JSON 

schema 

opt. 

Protobuf Protobuf 

(limited 

headers) 

Schema (SDL) IDL 

BROWSER NATIVE Yes Via proxy Yes 

(limitations) 

Yes Via 

WASM/client 

TRAILERS SUPPORT Limited Yes Limited N/A Varies 

BUILT-IN 

COMPRESSION 

HTTP HTTP/2 HTTP/1.1 HTTP Transport 

CODE GEN 

LANGUAGES 

Many Many Many Many Many 

SCHEMA EVOLUTION 

TOOLS 

Manual Descriptor 

registry 

Same as gRPC SDL tooling IDL tooling 

OBSERVABILITY 

INTERCEPTORS 

Manual Mature Proxy based Middleware Middleware 

 

The performance characteristics of RPC frameworks have been extensively studied. Chen ET AL. 

demonstrated that Protocol Buffers serialization reduces message sizes by up to seventy percent and halves 

CPU parsing time compared to JSON [3]. Zhou ET AL. evaluated gRPC enhanced with remote direct memory 

access and reported median latencies below fifty microseconds for 128 KB payloads, a four-fold improvement 

over TCP transports [4]. Singh ET AL. applied gRPC streaming to parallelized risk vector computations, 

achieving throughput improvements in burst scenarios [5]. In contrast, REST implementations exhibit higher 

tail latencies under load, due to the overhead of establishing connections and parsing text-based formats. 

However, prior work often omits practical governance considerations necessary in regulated finance, such as 

schema evolution policies and structured audit logging. To bridge this gap, Table III aggregates key 

performance metrics - p50, p90, and p99 latency percentiles, along with throughput rates from these 

foundational studies and recent industry whitepapers [6]. 
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TABLE III. AGGREGATED LATENCY PERCENTILES AND THROUGHPUT RATES FROM 

GRPC PERFORMANCE STUDIES. 

STUDY PAYLO

AD SIZE 

P50 

LATENCY 

(ΜS) 

P90 

LATENCY 

(ΜS) 

P99 

LATENCY 

(ΜS) 

THROUGHP

UT (REQ/S) 

CHEN ET AL. 

[3] 

1 KB 12 25 40 15000 

ZHOU ET AL. 

[4] 

128 KB 45 80 120 8000 

SINGH ET 

AL. [5] 

1 KB 18 35 60 12000 

LIU ET AL. 

[6] 

(INDUSTRY 

WHITEPAPE

R) 

128 KB 40 70 110 9000 

Each entry is sourced from the referenced study, ensuring traceability and verifiable DOI or URL links. 

To contextualize gRPC performance under realistic conditions, we summarize in Table IV the latency and 

throughput results from Gorton’s benchmark tests [24], which compare REST and gRPC implementations 

under scaled client loads. 

 

TABLE IV. LATENCY AND THROUGHPUT BENCHMARKS FROM GORTON’S 

PERFORMANCE TESTS. 

API 

STYLE 

LATENCY RANGE 

(MS) 

THROUGHPUT RANGE (REQ/SEC) 

REST 30 - 150 2,000 - 5,000 

GRPC 5 - 20 15,000 - 50,000 

These results reflect end-to-end measurements in a containerized microservice environment, highlighting 

gRPC’s significantly lower latency and higher throughput compared to REST. 

To incorporate community-driven benchmarks, Table V summarizes performance and resource utilization 

metrics reported by Niswar ET AL. in Pan Knowledge Journals [25]. These results compare gRPC, REST, 

and WebSocket under realistic server loads. 

 

TABLE V. PERFORMANCE AND RESOURCE UTILIZATION METRICS FROM NISWAR 

ET AL. [25]. 

METRIC GRPC REST WEBSOCKET 

AVERAGE LATENCY 

(MS) 

8.5 45.2 12.7 

PEAK THROUGHPUT 

(REQ/SEC) 

48,000 4,800 22,000 

CPU UTILIZATION (%) 60 75 65 

MEMORY FOOTPRINT 

(MB) 

120 180 150 

 

To provide a comprehensive view of RPC framework performance, Table VI detailed benchmark summary 

from Niswar ET AL. [25], including average and p95 latencies, throughput, CPU utilization, and memory 

footprint. Table VII presents detailed GRPC comparison with other protocols 
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TABLE VI. DETAILED RPsC FRAMEWORK BENCHMARK SUMMARY FROM NISWAR 

ET AL. [25]. 

FRAMEWORK AVG 

LATENCY 

(MS) 

P95 

LATENCY 

(MS) 

THROUGHPUT 

(REQ/S) 

CPU 

UTILIZATION 

(%) 

MEMORY 

FOOTPRINT 

(MB) 

GRPC [25] 8.5 12.3 48 000 60 120 

THRIFT [25] 10.2 15.8 25 000 65 140 

JSON-RPC [25] 30.6 50.1 5 000 80 200 

XML-RPC [25] 45.2 70.4 3 000 85 220 

 

TABLE VII. DETAILED RPC FRAMEWORK BENCHMARK SUMMARY 

FEATURE GRPC [26] REST [27] THRIFT [28] GRAPHQL [29] 

LATENCY (MS) 5 - 20 30 - 150 10 - 30 20 - 80 

THROUGHPUT (REQ/S) 15 000 - 50 000 2 000 - 5 000 10,000 - 25,000 5,000 - 10,000 

STREAMING SUPPORT Full None Partial Yes 

TYPE SAFETY Strong Weak Strong Strong 

BROWSER SUPPORT Limited Full No Full 

DEBUGGABILITY Needs Tools Mature Sparse Mature 

Latency and throughput ranges for gRPC are drawn from the official gRPC performance guide, which reports 

p50 latencies between 5 and 20 milliseconds and peak throughput up to 50 000 requests per second in 

microservice environments [26]. REST figures reference Pautasso’s empirical analysis of architectural styles, 

indicating typical REST API latencies of 30 to 150 milliseconds and throughputs of 2,000 to 5,000 requests 

per second [11]. Thrift benchmarks are sourced from the Apache Thrift performance documentation, showing 

latencies of 10 to 30 milliseconds and throughputs of 10,000 to 25,000 requests per second [12]. GraphQL 

performance metrics are based on the GraphQL Foundation’s benchmarking reports, which measure latencies 

between 20 and 80 milliseconds and throughputs of 5,000 to 10,000 requests per second [13]. 

 

III. FINANCIAL WORKLOAD ARCHETYPES 

MarketStream implements continuous server streaming of price or depth deltas to numerous subscribers. 

Unlike conventional REST polling, this stream pushes only incremental changes, eliminating polling storms 

and reducing redundant payload transmissions. Subscribers receive updates in real time as market conditions 

evolve. This improves bandwidth efficiency and lowers latency compared to repeated requests for full 

payloads. 

OrderDuplex creates a bidirectional streaming channel for sending order slices, cancels, amendments, and 

execution reports within a single duplex flow. By consolidating interactions into one persistent stream, it 

avoids the overhead and complexity of separate POST and GET cycles or ad hoc WebSocket JSON protocols. 

This approach ensures ordered delivery and flow control, which enables reliable high volume trading 

operations. 

RiskBurst relies on parallel unary RPC calls to compute financial risk vectors, such as value at risk (VaR) 

and option Greeks, in burst scenarios. Connection reuse through HTTP 2 multiplexing together with compact 

Protobuf encoding minimizes per call overhead and supports thousands of concurrent requests without 

excessive resource consumption. This pattern accelerates batch risk recalculation tasks that are critical for end 

of day and intraday risk assessments. 

ComplianceFanout processes a single inbound request that fans out to multiple enrichment services, 

including KYC, sanctions screening, and AML scoring, using structured gRPC metadata for context 

propagation. gRPC deadlines and retry policies ensure timely responses, and centralized audit logging records 

the graph of downstream calls. This pattern simplifies compliance workflows by providing end to end 

traceability and reliable invocation of all downstream services. 
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IV. REFERENCE ARCHITECTURE 

Fig 1. shows hybrid gRPC Web and REST API microservices architecture at high level architecture followed 

by each component highlights 

 

 
Fig. 1. High‑Level gRPC Architecture with Governance Layer 

 

Fig. 1 illustrates the comprehensive end-to-end architecture, demonstrating the interaction flow from browser 

and legacy REST clients through the API gateway, gRPC Web proxy, and Java-based gRPC services, 

extending to the observability layer and persistent storage. This visual representation clarifies how each 

component integrates seamlessly to deliver secure, low-latency, and strongly typed communication. 

The workflow begins with the browser gRPC Web client, which initiates interactions using automatically 

generated gRPC Web stubs in JavaScript or TypeScript. These stubs incorporate crucial features such as per-

call deadlines, retry and backoff policies, and metadata for trace IDs and authentication tokens. However, due 

to browsers' lack of native support for HTTP/2 framing, the client issues HTTP/1.1 requests accompanied by 

CORS headers directed toward a centralized gRPC Web proxy. 

Simultaneously, legacy REST clients continue utilizing conventional HTTP/1.x JSON protocols. These 

legacy communications are routed through the same API Gateway or Load Balancer, ensuring that both 

contemporary and older systems benefit from a unified control plane. This gateway performs essential 

functions including validating JWT or OAuth2 tokens, handling authentication and authorization, enforcing 

global and per-method rate limits, applying circuit breakers and bounded retries, and continuously emitting 

critical metrics such as queries per second (QPS), error code distributions, and latency percentiles. 

Additionally, it maintains upstream service health through active and passive health checks. 

The gRPC Web proxy, commonly implemented using Envoy, bridges the communication gap between the 

browser's HTTP/1.1 gRPC Web framing and the internal native HTTP/2 gRPC communications. It also 

manages TLS termination or re-termination at the network edge, addresses CORS preflight checks, and 

securely re-encrypts east-west traffic leveraging mutual TLS (mTLS) identities to uphold zero-trust security 

boundaries. 

Behind this proxy resides a Java-based gRPC server leveraging the Netty HTTP/2 stack. This server 

implements the contracts defined in ".proto" files, executing critical tasks such as input validation, 

orchestrating business logic, handling idempotency, and performing conditional retries for safe operations. 

The server concurrently exports structured logs and Prometheus metrics correlated with trace identifiers, 

capturing valuable insights on per-RPC latency, payload sizes, concurrency levels, and garbage collection 

metrics. 

Data persistence is efficiently managed by either SQL or NoSQL databases, accessed through pooled 

connections and Data Access Objects (DAO) or repository layers. This approach reduces connection 

https://www.ijlrp.com/


 

International Journal of Leading Research Publication (IJLRP) 

E-ISSN: 2582-8010   ●   Website: www.ijlrp.com   ●   Email: editor@ijlrp.com 

 

IJLRP25081712 Volume 6, Issue 8, August 2025 7 

 

overhead, applies appropriate timeouts, and effectively maps Protobuf domain objects to the respective 

database schemas. 

Cross-cutting observability and security measures tightly bind all tiers together. OpenTelemetry propagates 

distributed tracing contexts, such as trace and span IDs, seamlessly across browser stubs, gateways, proxies, 

services, and database interactions. This enables comprehensive end-to-end flame graphs for debugging and 

performance analysis. Unified metric tagging across services, methods, and statuses further facilitates Service 

Level Objective (SLO) tracking and timely alerting. 

Throughout the system, mTLS secures inter-service communication using short-lived certificates. This 

strategy aligns the trust boundary at the browser edge with internal zero-trust enforcement policies, ensuring 

all components consistently enforce tracing, metrics, and security standards. Consequently, the resulting 

request pipeline is coherent, debuggable, and compliant with rigorous governance and compliance 

requirements. 

 

V. GOVERNANCE & COMPLIANCE FRAMEWORK 

Schema Discipline: A central descriptor registry version-controls all “.proto” files. CI checks block field tag 

reuse and destructive removals; only additive changes (new optional fields) proceed. This reduces consumer 

breakage risk. 

Identity & Authorization: Short-lived service certificates (e.g., SPIFFE/SPIRE) supply workload identities; 

interceptors enforce role or attribute-based rules per RPC method. Central policy files simplify audits. 

Audit Logging: Each request emits a structured log: trace_id, principal_id, method, decision, elapsed_ms, 

downstream_call_ids, payload_hash (optionally), and retention_expiry. These fields support traceability 

requirements (e.g., trade reconstruction, access review) and tamper detection (hash chaining or WORM 

storage). 

Operational Guardrails: Global deadlines and per-method timeouts prevent unbounded latency. Retry 

policies apply only to idempotent methods. Backoff and circuit breaking interceptors contain failure domains. 

 

VI. CHALLENGES & MITIGATIONS 

Financial platforms adopting gRPC face several practical challenges during migration and operational use. 

Table VIII. summarizes these challenges, their impact on user experience or system performance, and 

simplified mitigation strategies that can be implemented with minimal overhead. 

 

 

TABLE VIII. CHALLENGES ENCOUNTERED AND CORRESPONDING MITIGATION 

STRATEGIES. 

CHALLENGE IMPACT SIMPLIFIED MITIGATION 

BROWSER LIMITATIONS (NO 

TRUE BIDI IN GRPC-WEB) 

Degraded order 

streaming UX 

Use gateway to upgrade to websockets or 

provide REST fallback for interactive 

features 

LOAD BALANCING SKEW (FEW 

HOT CONNECTIONS) 

Uneven backend 

CPU usage 

Enable connection pooling, adaptive 

concurrency, occasional connection rotation 

BINARY PAYLOAD 

INTROSPECTION 

Harder ad-hoc 

debugging 

Provide CLI/sidecar to decode Protobuf with 

schemas; redact sensitive fields 

SCHEMA DRIFT / UNMANAGED 

CHANGES 

Consumer 

breakages 

Automated descriptor diff gate in CI 

MIXED PROTOCOL ESTATE 

DURING MIGRATION 

Duplication of 

logic 

Layer translation gateway; sunset legacy 

endpoints with deprecation schedule 

OBSERVABILITY OVERHEAD 

CONCERNS 

Fear of added 

latency 

Sample traces selectively (e.g., head + error 

sampling) and aggregate metrics via 

interceptors 
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VII. MIGRATION PLAYBOOK (PHASED) 

1. Discovery & Inventory: Catalog existing REST endpoints, payload sizes, latency sensitivity, and 

compliance logging gaps. 

2. Parallel Schema Definition: Write “.proto” contracts mirroring high-value REST endpoints; generate 

stubs for each target language. 

3. Sidecar & Gateway Enablement: Deploy gRPC-Web proxy / Envoy sidecars for translation; ensure 

metrics and tracing propagate. 

4. Dual Run: Route a small percentage of traffic (e.g., 5 to 10%) through gRPC paths; validate functional 

parity and monitoring dashboards. 

5. Progressive Cutover: Increase share as stability confirmed; deprecate redundant REST endpoints 

(publish schedule). 

6. Hardening & Governance: Activate strict CI schema checks, enforce mTLS rotation schedules, finalize 

audit retention configuration. 

7. Optimization: Tune max concurrent streams, flow control window, and adjust retry/backoff policies 

based on observed patterns. 

 

VIII. FUTURE ENHANCEMENTS  

Emerging transport protocols such as HTTP/3 and QUIC promise further latency reductions and improved 

loss resilience, especially in wide area network deployments. Adaptive load shedding mechanisms, driven by 

real time service level objective feedback, can maintain performance under overload conditions. Integration 

of AI inference workloads over gRPC streams presents opportunities for advanced risk modeling and anomaly 

detection in streaming data. Finally, instrumentation of energy efficiency metrics such as requests per joule 

may guide sustainable infrastructure choices in cloud environments [9]. 

 

IX. CONCLUSION 

For trading, risk, and compliance microservices seeking lower latency variance, simpler streaming semantics, 

and stronger contract governance, gRPC provides immediate structural advantages versus ad-hoc 

REST/JSON: multiplexed connections, compact typed payloads, built-in streaming, and standardized 

cross-cutting interceptors. A disciplined focus on schema evolution and audit logging ensures regulatory 

alignment while mutual TLS and per-method authorization harden the mesh. By emphasizing pragmatic 

architectural and governance steps instead of exhaustive micro-benchmarking, this paper offers a streamlined 

adoption blueprint: start with high-churn polling endpoints, introduce a translation layer, enforce schema 

gates, and iteratively expand streaming where it replaces polling or multi-round-trip REST patterns. 

Organizations that follow this phased path can modernize their financial service fabric with modest 

engineering effort while positioning for future transport improvements (e.g., HTTP/3) and advanced workload 

types (AI inference, cross-chain events). 
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