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Abstract:

Modern financial systems including electronic trading, risk recalculation, and compliance screening
demand ultra-low latency, high throughput, and rigorous governance, providing fast and dependable
service to service communication without sacrificing auditability. gRPC supplies a unified Remote
Procedure Call (RPC) fabric built on HTTP/2 multiplexing together with compact Protocol Buffers
(Protobuf) messages and native streaming that simplifies these workflows relative to ad hoc
Representational State Transfer (REST) JavaScript Object Notation (JSON) endpoints [1] [2] [3]. This
paper gives a practical implementation focused view of adopting gRPC across four representative
financial interaction patterns (real time market data fan out, bidirectional order exchange, parallel risk
queries, compliance enrichment fan out) and couples them with governance measures (descriptor
registry, additive only schema evolution, short lived Mutual Transport Layer Security (mTLS)
identities, structured audit logs mapped to regulations) [4] [5] [6].

Keywords: gRPC, HTTP/2, finance, streaming, Protobuf, microservices, governance, compliance, audit
logging.

I. INTRODUCTION

In modern finance where microseconds influence spread capture, inline risk checks must not stall execution,
and regulatory/KYC/AML microservices must interpose without bloating latency where gRPC can be
leveraged as the unifying, low-latency communication backbone across trading, analytics, and compliance
domains.

Legacy REST JSON platforms in capital markets often incur avoidable overhead such as verbose payloads,
per request authentication round trips, and polling for updates [1] [2]. As workloads expand (market data
dissemination, order lifecycle management, intraday risk, sanctions and Know Y our Customer (K'Y C) checks)
duplication of cross cutting concerns (authentication, logging, tracing) increases latency variance and
operational cost [7]. gRPC offers a cohesive alternative because one connection per peer pair carries many
logical calls, streaming eliminates polling, and an Interface Definition Language (IDL) enforces consistent
types across polyglot teams [2] [3]. Existing comparisons frequently focus on raw percentile charts, but fewer
combine architectural guidance with governance and compliance details [5] [6]. This paper fills that practical
gap by describing adoption patterns, qualitative performance gains, and control mechanisms without requiring
readers to reproduce a heavy benchmarking apparatus.

Contributions:
1. Finance oriented overview of gRPC primitives mapped to four concrete workload archetypes.
2. Qualitative performance and efficiency comparison with REST and briefly GraphQL and Thrift
covering connection reuse, message compactness, reduced client polling, and simplified error handling.
3. Reference migration architecture (gateway and gRPC Web proxy and service tier) highlighting
observability and security insertion points.
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4. Lightweight governance framework including descriptor registry policy, additive schema evolution
guardrails, short lived mTLS identity, and audit log field mapping to Markets in Financial Instruments
Directive II (MiFID II) and Securities and Exchange Commission (SEC) retention needs [6] [8].

5. Practical adoption playbook including phased dual run, translation layer rollout, schema discipline
checklist, and operational guardrails (timeouts, retries, deadlines, health checks) [2] [4].

6. Challenges and mitigations including browser limitations, load balancing skew, binary introspection,
and schema drift.

II. RELATED WORK AND BENCHMARK SYNTHESIS
The following table defines key acronyms used throughout this paper:

TABLE I. TERMINOLOGY & ACRONYMS

Acronym Definition

gRPC Google Remote Procedure Call

HTTP/2 Hypertext Transfer Protocol v2

SSE Server-Sent Events

mTLS Mutual TLS Authentication

MIFID II Markets in Financial Instruments Directive I1

A. HTTP 2 Multiplexing and Connection Reuse: A single TLS connection can handle multiple concurrent
RPCs, which smooths out spikes in connection rates during market opens and significantly reduces CPU
overhead per request. By leveraging HTTP 2’°s multiplexing capabilities, services avoid the costly setup and
teardown of individual connections for each call, leading to more efficient resource utilization and lower
latency variance [9]. This continuous connection model also minimizes socket churn, enabling more stable
and predictable performance under heavy load.

B. Compact Binary Protocol: Protocol Buffers serialize financial payloads such as price ticks, order
acknowledgments, and risk vectors into a compact binary format that is both faster to parse and smaller on
the wire than JSON. In microbenchmarks, Protobuf messages consume up to 70 percent fewer bytes and
reduce CPU parsing time by approximately 50 percent compared to equivalent JSON payloads [10]. This
efficiency gain translates directly into lower end-to-end latency and reduced bandwidth consumption, which
are critical for high-frequency trading and real-time analytics.

C. Streaming Primitives: gRPC’s streaming primitives allow services to establish long-lived channels for
continuous data exchange. Server streaming enables real-time market data feeds to push price and depth
updates without client-side polling. Bidirectional streaming extends this model to interactive scenarios such
as order submission and execution reporting, where both client and server can send messages independently.
Built-in flow control mechanisms ensure that neither side becomes overwhelmed, maintaining backpressure
and protecting services from overload [11].

D. Strong Contracts and Polyglot Tooling: By defining service contracts in “.proto” files, gRPC enforces
strong typing and consistent interfaces across languages. These definitions generate native client and server
stubs in Java, C++, Go, Python, .NET, and Node JS, eliminating handwritten boilerplate code and ensuring
compatibility across heterogeneous environments. This polyglot approach accelerates development, reduces
integration errors, and keeps distributed teams aligned on Application Programming Interface (API)
specifications [12].
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TABLE I1. CAPABILITY MATRIX OF LEADING API PROTOCOLS

CAPABILITY REST GRPC GRPC-WEB GRAPHQL THRIFT
UNARY Yes Yes Yes Yes Yes
SERVER STREAMING | Partial Yes Yes (limited) Subscriptions | Partial*

(Server- (server —

Sent client)

Events

(SSE))
CLIENT STREAMING | No Yes No No Partial*
BIDIRECTIONAL No Yes No No Partial*
STREAMING
STRONG TYPING | JSON Protobuf [ Protobuf Schema (SDL) | IDL
(IDL) schema (limited

opt. headers)
BROWSER NATIVE Yes Via proxy | Yes Yes Via

(limitations) WASM/client

TRAILERS SUPPORT | Limited Yes Limited N/A Varies
BUILT-IN HTTP HTTP/2 HTTP/1.1 HTTP Transport
COMPRESSION
CODE GEN | Many Many Many Many Many
LANGUAGES
SCHEMA EVOLUTION | Manual Descriptor | Same as gRPC | SDL tooling IDL tooling
TOOLS registry
OBSERVABILITY Manual Mature Proxy based Middleware Middleware
INTERCEPTORS

The performance characteristics of RPC frameworks have been extensively studied. Chen ET AL.
demonstrated that Protocol Buffers serialization reduces message sizes by up to seventy percent and halves
CPU parsing time compared to JSON [3]. Zhou ET AL. evaluated gRPC enhanced with remote direct memory
access and reported median latencies below fifty microseconds for 128 KB payloads, a four-fold improvement
over TCP transports [4]. Singh ET AL. applied gRPC streaming to parallelized risk vector computations,
achieving throughput improvements in burst scenarios [5]. In contrast, REST implementations exhibit higher
tail latencies under load, due to the overhead of establishing connections and parsing text-based formats.
However, prior work often omits practical governance considerations necessary in regulated finance, such as
schema evolution policies and structured audit logging. To bridge this gap, Table III aggregates key
performance metrics - p50, p90, and p99 latency percentiles, along with throughput rates from these
foundational studies and recent industry whitepapers [6].
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TABLE III. AGGREGATED LATENCY PERCENTILES AND THROUGHPUT RATES FROM
GRPC PERFORMANCE STUDIES.

STUDY PAYLO |[P50 P90 P99 THROUGHP

AD SIZE | LATENCY |LATENCY |LATENCY |UT (REQ/S)
(MS) (MS) (MS)

CHEN ET AL. | 1 KB 12 25 40 15000

[3]

ZHOU ET AL. | 128KB | 45 80 120 8000

[4]

SINGH ET|1KB 18 35 60 12000

AL. [5]

LIU ET AL.[128KB |40 70 110 9000

[6]

(INDUSTRY

WHITEPAPE

R)

Each entry is sourced from the referenced study, ensuring traceability and verifiable DOI or URL links.

To contextualize gRPC performance under realistic conditions, we summarize in Table IV the latency and
throughput results from Gorton’s benchmark tests [24], which compare REST and gRPC implementations
under scaled client loads.

TABLE IV. LATENCY AND THROUGHPUT BENCHMARKS FROM GORTON’S
PERFORMANCE TESTS.

API LATENCY RANGE | THROUGHPUT RANGE (REQ/SEC)
STYLE (MS)

REST 30 - 150 2,000 - 5,000

GRPC 5-20 15,000 - 50,000

These results reflect end-to-end measurements in a containerized microservice environment, highlighting
gRPC’s significantly lower latency and higher throughput compared to REST.

To incorporate community-driven benchmarks, Table V summarizes performance and resource utilization
metrics reported by Niswar ET AL. in Pan Knowledge Journals [25]. These results compare gRPC, REST,
and WebSocket under realistic server loads.

TABLE V. PERFORMANCE AND RESOURCE UTILIZATION METRICS FROM NISWAR

ET AL. [25].

METRIC GRPC REST WEBSOCKET
AVERAGE  LATENCY |85 452 12.7

MS)

PEAK THROUGHPUT | 48,000 4,800 22,000
(REQ/SEC)

CPU UTILIZATION (%) | 60 75 65
MEMORY FOOTPRINT | 120 180 150

(MB)

To provide a comprehensive view of RPC framework performance, Table VI detailed benchmark summary
from Niswar ET AL. [25], including average and p95 latencies, throughput, CPU utilization, and memory
footprint. Table VII presents detailed GRPC comparison with other protocols
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ET AL. [25].
FRAMEWORK | AVG P95 THROUGHPUT | CPU MEMORY
LATENCY | LATENCY | (REQ/S) UTILIZATION | FOOTPRINT
MS) (MS) (%) (MB)
GRPC [25] 8.5 12.3 48 000 60 120
THRIFT [25] | 10.2 15.8 25000 65 140
JSON-RPC [25] | 30.6 50.1 5000 80 200
XML-RPC [25] | 45.2 70.4 3000 85 220

TABLE VII. DETAILED RPC FRAMEWORK BENCHMARK SUMMARY

FEATURE GRPC [26] REST [27] | THRIFT [28] | GRAPHQL [29]
LATENCY (MS) 5-20 30-150 10 - 30 20 - 80
THROUGHPUT (REQ/S) | 15000 - 50 000 | 2 000 - 5000 | 10,000 - 25,000 | 5,000 - 10,000
STREAMING SUPPORT | Full None Partial Yes

TYPE SAFETY Strong Weak Strong Strong
BROWSER SUPPORT Limited Full No Full
DEBUGGABILITY Needs Tools Mature Sparse Mature

Latency and throughput ranges for gRPC are drawn from the official gRPC performance guide, which reports
pS0 latencies between 5 and 20 milliseconds and peak throughput up to 50 000 requests per second in
microservice environments [26]. REST figures reference Pautasso’s empirical analysis of architectural styles,
indicating typical REST API latencies of 30 to 150 milliseconds and throughputs of 2,000 to 5,000 requests
per second [11]. Thrift benchmarks are sourced from the Apache Thrift performance documentation, showing
latencies of 10 to 30 milliseconds and throughputs of 10,000 to 25,000 requests per second [12]. GraphQL
performance metrics are based on the GraphQL Foundation’s benchmarking reports, which measure latencies
between 20 and 80 milliseconds and throughputs of 5,000 to 10,000 requests per second [13].

II1. FINANCIAL WORKLOAD ARCHETYPES

MarketStream implements continuous server streaming of price or depth deltas to numerous subscribers.
Unlike conventional REST polling, this stream pushes only incremental changes, eliminating polling storms
and reducing redundant payload transmissions. Subscribers receive updates in real time as market conditions
evolve. This improves bandwidth efficiency and lowers latency compared to repeated requests for full
payloads.

OrderDuplex creates a bidirectional streaming channel for sending order slices, cancels, amendments, and
execution reports within a single duplex flow. By consolidating interactions into one persistent stream, it
avoids the overhead and complexity of separate POST and GET cycles or ad hoc WebSocket JSON protocols.
This approach ensures ordered delivery and flow control, which enables reliable high volume trading
operations.

RiskBurst relies on parallel unary RPC calls to compute financial risk vectors, such as value at risk (VaR)
and option Greeks, in burst scenarios. Connection reuse through HTTP 2 multiplexing together with compact
Protobuf encoding minimizes per call overhead and supports thousands of concurrent requests without
excessive resource consumption. This pattern accelerates batch risk recalculation tasks that are critical for end
of day and intraday risk assessments.

ComplianceFanout processes a single inbound request that fans out to multiple enrichment services,
including KYC, sanctions screening, and AML scoring, using structured gRPC metadata for context
propagation. gRPC deadlines and retry policies ensure timely responses, and centralized audit logging records
the graph of downstream calls. This pattern simplifies compliance workflows by providing end to end
traceability and reliable invocation of all downstream services.
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IV. REFERENCE ARCHITECTURE
Fig 1. shows hybrid gRPC Web and REST API microservices architecture at high level architecture followed
by each component highlights

'

GRPC Client - A Server (Java Netty
(Remix - grpc-weh) I HTTPI2)
grpc-web Stubs Service gRPC Service Tier
Definitions — . . _—
* Channel (.proto) Business Logic,
+ Generated Stubs Interceptors,
« Interceptor N Validations, Auth,
(deadlines/retries) Logging/Metrics
mTLS PR

& Security
plane
OTel, Audit,
Prometheus,
Logs, CA

API Gateway / Load

Balancer

Observability
TCPIIP

Supported AP| - C + Rate Limiting
Vendor + Monitoring )
* Circuit Breaker/retry grpc - Web proxy A

policies (grpcwebproxy or Envoy's
- grpc_web)
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+ TLS termination e

Fig. 1. High-Level gRPC Architecture with Governance Layer

Fig. 1 illustrates the comprehensive end-to-end architecture, demonstrating the interaction flow from browser
and legacy REST clients through the API gateway, gRPC Web proxy, and Java-based gRPC services,
extending to the observability layer and persistent storage. This visual representation clarifies how each
component integrates seamlessly to deliver secure, low-latency, and strongly typed communication.

The workflow begins with the browser gRPC Web client, which initiates interactions using automatically
generated gRPC Web stubs in JavaScript or TypeScript. These stubs incorporate crucial features such as per-
call deadlines, retry and backoff policies, and metadata for trace IDs and authentication tokens. However, due
to browsers' lack of native support for HTTP/2 framing, the client issues HTTP/1.1 requests accompanied by
CORS headers directed toward a centralized gRPC Web proxy.

Simultaneously, legacy REST clients continue utilizing conventional HTTP/1.x JSON protocols. These
legacy communications are routed through the same API Gateway or Load Balancer, ensuring that both
contemporary and older systems benefit from a unified control plane. This gateway performs essential
functions including validating JWT or OAuth2 tokens, handling authentication and authorization, enforcing
global and per-method rate limits, applying circuit breakers and bounded retries, and continuously emitting
critical metrics such as queries per second (QPS), error code distributions, and latency percentiles.
Additionally, it maintains upstream service health through active and passive health checks.

The gRPC Web proxy, commonly implemented using Envoy, bridges the communication gap between the
browser's HTTP/1.1 gRPC Web framing and the internal native HTTP/2 gRPC communications. It also
manages TLS termination or re-termination at the network edge, addresses CORS preflight checks, and
securely re-encrypts east-west traffic leveraging mutual TLS (mTLS) identities to uphold zero-trust security
boundaries.

Behind this proxy resides a Java-based gRPC server leveraging the Netty HTTP/2 stack. This server
implements the contracts defined in ".proto" files, executing critical tasks such as input validation,
orchestrating business logic, handling idempotency, and performing conditional retries for safe operations.
The server concurrently exports structured logs and Prometheus metrics correlated with trace identifiers,
capturing valuable insights on per-RPC latency, payload sizes, concurrency levels, and garbage collection
metrics.

Data persistence is efficiently managed by either SQL or NoSQL databases, accessed through pooled
connections and Data Access Objects (DAO) or repository layers. This approach reduces connection
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overhead, applies appropriate timeouts, and effectively maps Protobuf domain objects to the respective
database schemas.

Cross-cutting observability and security measures tightly bind all tiers together. OpenTelemetry propagates
distributed tracing contexts, such as trace and span IDs, seamlessly across browser stubs, gateways, proxies,
services, and database interactions. This enables comprehensive end-to-end flame graphs for debugging and
performance analysis. Unified metric tagging across services, methods, and statuses further facilitates Service
Level Objective (SLO) tracking and timely alerting.

Throughout the system, mTLS secures inter-service communication using short-lived certificates. This
strategy aligns the trust boundary at the browser edge with internal zero-trust enforcement policies, ensuring
all components consistently enforce tracing, metrics, and security standards. Consequently, the resulting
request pipeline is coherent, debuggable, and compliant with rigorous governance and compliance
requirements.
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V. GOVERNANCE & COMPLIANCE FRAMEWORK

Schema Discipline: A central descriptor registry version-controls all “.proto” files. CI checks block field tag
reuse and destructive removals; only additive changes (new optional fields) proceed. This reduces consumer
breakage risk.

Identity & Authorization: Short-lived service certificates (e.g., SPIFFE/SPIRE) supply workload identities;
interceptors enforce role or attribute-based rules per RPC method. Central policy files simplify audits.

Audit Logging: Each request emits a structured log: trace id, principal id, method, decision, elapsed ms,
downstream_call ids, payload hash (optionally), and retention_expiry. These fields support traceability
requirements (e.g., trade reconstruction, access review) and tamper detection (hash chaining or WORM
storage).

Operational Guardrails: Global deadlines and per-method timeouts prevent unbounded latency. Retry
policies apply only to idempotent methods. Backoff and circuit breaking interceptors contain failure domains.

VI. CHALLENGES & MITIGATIONS

Financial platforms adopting gRPC face several practical challenges during migration and operational use.
Table VIII. summarizes these challenges, their impact on user experience or system performance, and
simplified mitigation strategies that can be implemented with minimal overhead.

TABLE VIII. CHALLENGES ENCOUNTERED AND CORRESPONDING MITIGATION

STRATEGIES.
CHALLENGE IMPACT SIMPLIFIED MITIGATION
BROWSER LIMITATIONS (NO | Degraded order | Use gateway to upgrade to websockets or
TRUE BIDI IN GRPC-WEB) streaming UX provide REST fallback for interactive
features
LOAD BALANCING SKEW (FEW | Uneven backend | Enable connection pooling, adaptive
HOT CONNECTIONS) CPU usage concurrency, occasional connection rotation
BINARY PAYLOAD | Harder ad-hoc | Provide CLI/sidecar to decode Protobuf with
INTROSPECTION debugging schemas; redact sensitive fields
SCHEMA DRIFT / UNMANAGED | Consumer Automated descriptor diff gate in CI
CHANGES breakages
MIXED PROTOCOL ESTATE | Duplication of | Layer translation gateway; sunset legacy
DURING MIGRATION logic endpoints with deprecation schedule
OBSERVABILITY OVERHEAD ([ Fear of added | Sample traces selectively (e.g., head + error
CONCERNS latency sampling) and aggregate metrics via
interceptors
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VII. MIGRATION PLAYBOOK (PHASED)

1. Discovery & Inventory: Catalog existing REST endpoints, payload sizes, latency sensitivity, and
compliance logging gaps.

2. Parallel Schema Definition: Write “.proto” contracts mirroring high-value REST endpoints; generate
stubs for each target language.

3. Sidecar & Gateway Enablement: Deploy gRPC-Web proxy / Envoy sidecars for translation; ensure
metrics and tracing propagate.

4. Dual Run: Route a small percentage of traffic (e.g., 5 to 10%) through gRPC paths; validate functional
parity and monitoring dashboards.

5. Progressive Cutover: Increase share as stability confirmed; deprecate redundant REST endpoints
(publish schedule).

6. Hardening & Governance: Activate strict CI schema checks, enforce mTLS rotation schedules, finalize
audit retention configuration.

7. Optimization: Tune max concurrent streams, flow control window, and adjust retry/backoff policies
based on observed patterns.

VIII. FUTURE ENHANCEMENTS

Emerging transport protocols such as HTTP/3 and QUIC promise further latency reductions and improved
loss resilience, especially in wide area network deployments. Adaptive load shedding mechanisms, driven by
real time service level objective feedback, can maintain performance under overload conditions. Integration
of Al inference workloads over gRPC streams presents opportunities for advanced risk modeling and anomaly
detection in streaming data. Finally, instrumentation of energy efficiency metrics such as requests per joule
may guide sustainable infrastructure choices in cloud environments [9].

IX. CONCLUSION

For trading, risk, and compliance microservices seeking lower latency variance, simpler streaming semantics,
and stronger contract governance, gRPC provides immediate structural advantages versus ad-hoc
REST/JSON: multiplexed connections, compact typed payloads, built-in streaming, and standardized
cross-cutting interceptors. A disciplined focus on schema evolution and audit logging ensures regulatory
alignment while mutual TLS and per-method authorization harden the mesh. By emphasizing pragmatic
architectural and governance steps instead of exhaustive micro-benchmarking, this paper offers a streamlined
adoption blueprint: start with high-churn polling endpoints, introduce a translation layer, enforce schema
gates, and iteratively expand streaming where it replaces polling or multi-round-trip REST patterns.
Organizations that follow this phased path can modernize their financial service fabric with modest
engineering effort while positioning for future transport improvements (e.g., HTTP/3) and advanced workload
types (Al inference, cross-chain events).
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