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Abstract:  

Access to safe and potable water is a pressing global challenge, particularly in regions lacking 

advanced environmental monitoring infrastructure. This paper presents a cost-free, open- source, 

and publicly deployable machine learning system that predicts water potability based on 

physicochemical attributes. The solution integrates SMOTE for class imbalance correction, standard 

scaling for feature normalization, and a calibrated XGBoost classifier for reliable probabilistic 

predictions. The entire pipeline is deployed as an interactive Streamlit web application, enabling 

real-time predictions with confidence scores. With support for reproducibility and transparency via a 

public GitHub repository, the system empowers data-driven decision- making for researchers, field 

personnel, and public health profes- sionals. Experimental results demonstrate balanced accuracy of 

approximately 65% and strong interpretability through feature importance analysis. This work 

bridges the gap between aca- demic modeling and field deployment, contributing a practical and 

scalable tool for environmental health applications. 

 

Index Terms: Water Potability, Machine Learning, SMOTE, XGBoost, Streamlit, Environmental 

Monitoring, Confidence Cal- ibration, Public Health. 

 

I. INTRODUCTION 

Access to clean and potable water is fundamental to public health, yet remains an unresolved challenge 

in many parts of the world. According to the World Health Organization (WHO), over 2 billion people 

consume drinking water con- taminated with fecal matter or industrial pollutants [10]. Inad- equate water 

quality contributes to a wide spectrum of health issues, including gastrointestinal diseases and 

developmental disorders. While agencies such as the U.S. Environmental Protection Agency (EPA) enforce 

water quality standards [3], infrastructure for real-time prediction and monitoring remains limited in low-

resource regions due to cost, system complexity, or lack of trained personnel. 

 

Machine learning (ML) has emerged as a transformative tool in environmental informatics, enabling data-

driven approaches to pollution detection, contamination forecasting, and health risk modeling [4], [14]. 

However, many existing ML-based solutions are either embedded in proprietary IoT ecosystems or exist 

only as experimental academic models. These systems often lack real-world usability, explainability, or 

deployabil- ity—especially for underserved communities. 

 

This paper presents a fully open-source, deployable, and interpretable water potability prediction system 

built on machine learning principles. The system addresses dataset imbal- ance using the Synthetic 

Minority Over-sampling Technique (SMOTE) [12], applies feature normalization via Scikit-learn’s 

StandardScaler [5], and leverages a calibrated XGBoost classi- fier [2], [14] to generate probabilistically 
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reliable predictions. Model transparency is enhanced using feature importance and explainability 

techniques such as SHAP [11], ensuring interpretability for public stakeholders and regulators. 

 

Unlike prior work, the system is deployed as a lightweight, browser-accessible application via Streamlit 

[15], requiring no installation or programming expertise. All training notebooks, preprocessing scripts, and 

deployment artifacts are publicly hosted on GitHub [8], enabling transparency, reproducibility, and 

community adoption. As an open-source deployment tool, Streamlit also fosters community-driven 

development and reuse, accelerating collaborative innovation for public-interest machine learning 

applications [15]. 

 

This work contributes toward bridging the gap between theoretical ML models and practical tools for water 

safety monitoring—supporting environmental governance, NGO in- terventions, and public access to 

predictive health technolo- gies. 

 

II. RELATED WORK 

Machine learning has increasingly been applied to envi- ronmental domains such as air quality forecasting, 

pollution detection, and water safety classification. A variety of super- vised learning techniques—such as 

Decision Trees, Support Vector Machines, and Random Forests—have been employed to predict potability 

based on physicochemical features [4], [7]. While these approaches show promise, they often prior- itize 

classification accuracy over interpretability, deployment accessibility, or real-world usability. 

 

Some commercial water quality monitoring systems inte- grate IoT sensors with backend ML models, 

offering real- time alerts. However, such platforms are typically proprietary, costly, and require stable 

connectivity and infrastructure, lim- iting their application in rural or underdeveloped regions. 

Academic projects have used the Kaggle water potability dataset to train basic classifiers, but they rarely 

address critical modeling challenges such as class imbalance, poor probability 

calibration, or lack of deployment. Moreover, most implemen- tations exist only as static notebooks or 

research experiments with no accessible user interface. 

This paper addresses these gaps by: 

• Applying SMOTE to handle dataset imbalance [1] 

• Using calibrated XGBoost for confidence-aware predic- tions [2], [9] 

• Scaling features using Scikit-learn’s StandardScaler [5] 

• Deploying the solution via Streamlit [6], enabling real- time prediction through a user-friendly web 

interface 

• Releasing the entire codebase and artifacts through an open-access GitHub repository [8] 

This integrated approach provides a practical, scalable, and reproducible framework for water quality 

assessment, bridging the gap between academic research and field deployment. 

 

III. METHODOLOGY 

A. Dataset and Features 

The dataset used comprises approximately 3,200 samples, each characterized by nine physicochemical 

attributes: pH, hardness, solids, chloramines, sulfate, conductivity, organic carbon, trihalomethanes 

(THMs), and turbidity. The binary tar- get variable Potability indicates whether a water sample is considered 

drinkable (1) or not (0) [8]. The class distribution was highly imbalanced, as shown in Fig. 1. 
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Fig. 1. Original Class Distribution Before SMOTE 

 

B. Preprocessing and Balancing 

To address the class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied 

using the imbalanced-learn Python library [12]. This technique generated synthetic examples of the 

minority class to equal- ize the distribution, resulting in Fig. 2. Missing values were removed using 

listwise deletion. All numerical features were normalized using Scikit-learn’s StandardScaler [5], which 

ensures zero mean and unit variance scaling—a best practice for boosting model convergence and stability. 

 

 
 

Fig. 2. Balanced Class Distribution After SMOTE 

 

C. Data Preprocessing Summary 

Table I summarizes the sequence of preprocessing opera- tions. 

 

TABLE I- PREPROCESSING STEPS APPLIED 

 

Step Description 

Missing Value Removal 

SMOTE Oversampling 

Feature Scaling Train/Test 

Split 

Dropped rows with null values 

Balanced classes using synthetic examples Applied 

StandardScaler normalization 80% training, 20% 

testing (post-balancing) 
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D. Model Selection and Calibration 

XGBoost was selected due to its proven efficiency and high accuracy on structured tabular datasets [2]. 

Since tree- based models often yield poorly calibrated probabilities, we applied Scikit-learn’s 

CalibratedClassifierCV using 5-fold cross-validation and Platt scaling [14]. The key hyper- parameters are 

listed in Table II. 

 

TABLE II- HYPERPARAMETERS USED IN XGBOOST 

 

Parameter Value 

n estimators 100 

max depth 4 

learning rate 0.1 

eval metric logloss 

random state 42 

 

E. Model Persistence and Deployment 

The trained XGBoost model and feature scaler were serial- ized using joblib and integrated into a browser-

based web application developed with Streamlit [15]. This architecture enables lightweight, cross-platform 

deployment with no local installation required. Unlike heavier frameworks such as Flask or Dash, Streamlit 

offers faster prototyping and automatic interface rendering directly from Python scripts, which makes 

it highly suitable for lightweight, browser-accessible ML 13 

applications [15]. Fig. 3 illustrates the overall end-to-end 14 

workflow. 

 

 

 

Listing 1. Streamlit Inference Code 

 

V. RESULTS AND EVALUATION 

The trained and calibrated XGBoost classifier was evaluated using a 20% hold-out test set. Key 

performance metrics, in- cluding accuracy, precision, recall, and F1-score, are presented in Table III. The 

results indicate well-balanced classification performance with consistent precision-recall tradeoffs and 

stable probability estimates. 

 

TABLE III- TEST SET EVALUATION METRICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metric Value 
Accuracy 65.0% 
Precision 64–66% 
Recall 64–66% 

F1-Score 65.0% 

input_scaled = scaler.transform(input_df) 

proba = model.predict_proba(input_scaled)[0] 

pred = int(np.argmax(proba)) 

confidence = round(100 * proba[pred], 2) 
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Fig. 3. System Architecture: End-to-End Workflow 

 

IV. SYSTEM ARCHITECTURE 

The system is designed to provide real-time, confidence- aware predictions for water potability based on 

user inputs or batch data. The architecture integrates modular stages of preprocessing, model training, 

calibration, and deployment. 

 

As shown in Fig. 3, the workflow begins with a cleaned CSV dataset or user-provided sample. Data 

preprocessing includes SMOTE-based class balancing and feature scaling. The pre- processed data is used 

to train a calibrated XGBoost classifier. The trained model is then used to generate probability-based 

predictions, which are calibrated before being displayed to the user. 

 

The deployed system is implemented as an interactive web application using Streamlit [6]. The app 

allows users to input water quality attributes through a graphical interface and returns the predicted class 

(Potable/Not Potable), along with class probabilities and confidence scores. This makes the model 

accessible to public health professionals, researchers, and communities lacking technical expertise. 

All source code and documentation are publicly available via GitHub [8], enabling reproducibility and 

adaptation for new datasets or geographies. 

 

A. Sample Streamlit Inference Code 

The snippet below shows how user input is scaled and passed to the deployed model within the Streamlit 

application: 

 

 

 

 

 

 

 

 

 

The confusion matrix shown in Fig. 4 further illustrates the model’s ability to detect both potable and non-

potable samples with minimal class bias. Feature importance scores averaged over multiple calibration 

folds are depicted in Fig. 5, offering a transparent view of model decision logic. 

 

 

 

 

input_df = pd.DataFrame([{ 

"ph": ph, 

"Hardness": hardness, 

"Solids": solids, 

"Chloramines": chloramines, 

"Sulfate": sulfate, 

"Conductivity": conductivity, 

"Organic_carbon": organic_carbon, 

"Trihalomethanes": trihalomethanes, 

"Turbidity": turbidity 

}]) 
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Fig. 4. Confusion Matrix of Final Calibrated XGBoost Model 

 

 

Fig. 5. Feature Importance (Averaged Across Calibrated XGBoost Models) 

 

A. Model Benchmark Comparison 

To validate model selection, baseline classifiers—logistic regression and random forest—were also trained 

and evalu- ated. Table IV presents the comparative results. Only XGBoost and logistic regression were 

calibrated using Scikit-learn’s CalibratedClassifierCV [14]. Among the three, cali- brated XGBoost 

achieved the highest accuracy and F1-score, justifying its deployment. 

 

TABLE IV- MODEL COMPARISON ON TEST SET 

 

 

 

 

 

 

 

 

B. Confidence and Interpretability 

Beyond binary labels, the model generates probability distributions over both classes. These are used to 

compute real-time confidence scores in the deployed Streamlit interface, helping end-users interpret model 

certainty [13]. Feature importance charts and JSON-formatted prediction outputs (see Appendix B and C) 

enhance transparency and foster adoption in regulated or public-facing environments. 

 

 

Model Accuracy F1-Score Calibrated 

Logistic 

Regression 

61.2% 60.4% Yes 

Random 

Forest 

63.8% 62.9% No 

XGBoost 65.0% 65.0% Yes 
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Overall, the system balances classification accuracy, confidence calibration, and explainability—making it 

suitable for real-world water quality prediction in both community and institutional contexts. 

 

VI. FUTURE SCOPE 

While the current system provides a scalable, open-source solution for water potability prediction, several 

enhancements are planned to extend its impact, usability, and scientific utility: 

 

A. Real-Time Data Integration 

Future versions may support real-time water quality data ingestion from public repositories such as 

EQuIS, as well as IoT-based sensor networks. This would enable dynamic monitoring of water sources 

and instant alert systems for contamination events. 

 

B. Geospatial Risk Mapping 

By integrating geolocation tags, the system can be extended to generate risk heatmaps, enabling public 

health departments to visualize potability status across regions. This would facilitate resource allocation 

and preventive action in high-risk zones. 

 

C. Mobile and Offline Access 

To enhance reach in rural or low-connectivity areas, the cur- rent Streamlit web app could be containerized 

as a Progressive Web App (PWA) for mobile devices. Offline prediction using pre-loaded models and data 

is also being explored. 

 

D. AutoML and Self-Updating Models 

Integrating AutoML tools such as AutoGluon or H2O.ai will allow non-technical users to retrain and deploy 

updated models based on new datasets. This ensures long-term adaptability without needing data science 

expertise. 

 

E. Explainability and Trust 

Incorporating explainability techniques such as SHAP and LIME helps end-users interpret which features 

influenced a classification decision. This capability is particularly valuable for policy makers and 

regulatory transparency. 

 

F. NGO and Government Integration 

Discussions are underway to adapt this tool for use in humanitarian and governmental water testing 

initiatives. The system could serve as a decision-support tool for environmental regulators and disaster 

response agencies. 

 

G. Multilingual and Accessibility Enhancements 

To increase adoption across global communities, future versions will support multilingual interfaces, 

screen reader compatibility, and local water quality thresholds. 

 

VII. LIMITATIONS 

While the Water Potability Prediction App demonstrates strong performance using calibrated XGBoost and 

SMOTE- based balancing, several limitations exist: 

• Dataset Size and Scope: The model is trained on a relatively small dataset of ˜3,200 samples. This 

may limit generalizability across different regions, climates, or seasonal variations. 

• Lack of Geolocation Context: The current model uses only physicochemical properties without 

incorporating source location or regional context, which could influence water potability. 

• Synthetic Sampling Risks: Although SMOTE helps balance the dataset, it may introduce synthetic 
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data points that do not correspond to real-world physical samples, possibly affecting precision. 

• Interpretability: While the app includes confidence scores, deeper explainability (e.g., SHAP or 

LIME) is not integrated into the interface yet. 

• Real-Time Applicability: The model is trained on historical data and does not currently ingest live 

sensor or IoT data, which limits deployment in real-time monitoring environments. 

 

VIII. CONCLUSION 

This study presents a practical, cost-free, and fully re- producible machine learning solution for predicting 

water potability using publicly available environmental data. By combining SMOTE for class balancing, 

XGBoost for accurate classification, and probability calibration for interpretability, the system achieves 

robust performance suitable for real-world applications. 

 

The model is deployed through a lightweight Streamlit interface that enables users to input water quality 

measurements and receive real-time predictions along with confidence scores. This end-to-end workflow—

from model training to de- ployment—ensures accessibility even in resource-constrained settings, 

contributing directly to public health initiatives and environmental decision-making. Streamlit’s zero-setup, 

web- based interface enhances accessibility for NGOs, public health officers, and academic users by 

eliminating the need for infrastructure management or specialized coding skills [15]. 

 

All source code, documentation, and test cases are avail- able in a public GitHub repository, promoting 

transparency, reproducibility, and collaboration. 

Future work will extend this framework by integrating live data from IoT-based sensors, enabling 

continuous water monitoring in vulnerable communities. Additional plans include adapting the model to 

multi-regional datasets, supporting multilingual interfaces, and incorporating interpretability tools like 

SHAP to provide actionable insights for local policymakers and non-expert users. 

This project exemplifies how accessible AI tools can bridge data science and societal impact, offering a 

replicable model for other environmental applications in the public domain. 

 

APPENDIX A 

USER INTERFACE SNAPSHOT 

Fig. 6 shows the deployed Streamlit application interface, allowing users to input physicochemical values 

and obtain predictions with confidence scores in real time. 

 

APPENDIX B 

SAMPLE PREDICTION OUTPUT 

Below is an example of the JSON response generated after submitting a test sample through the app 

interface. The output includes the binary classification labels along with calibrated probability scores. 

1 

2 

3 

4 

 

Listing 2. Sample App Output in JSON Format 

Potable / Not Potable: These fields represent the model’s calibrated probability estimates for each class 

label. The value with the higher percentage indicates the final prediction. 

Confidence Score: This is a duplicate of the higher probability value for user convenience, displayed 

explicitly for clarity in the app interface. 

 

 

{ 

"Not Potable": "28.27%", 

"Potable": "71.73%", 

"Confidence Score": "71.73%" 

} 
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APPENDIX C SAMPLE TEST CASES 

Table V presents 10 representative water samples along with the full set of physicochemical input features 

used in prediction. Outputs are shown with class labels and calibrated confidence scores using the deployed 

Streamlit app powered by the XGBoost model. 

 

 
Fig. 6. Streamlit-Based Potability Prediction Web Interface 

 

APPENDIX D SOURCE CODE REPOSITORY 

All training scripts, model files, and deployment logic are available at: 

For source code and documentation, visit: https://github. com/pramathparashar/WaterQuality-Predictor 

The repository includes: 

• Training pipeline notebook 

• Final model and scaler (.pkl) 

• Streamlit app source code 

• Sample test cases and screenshots 

•  

APPENDIX E GLOSSARY OF KEY TERMS 

• SMOTE (Synthetic Minority Over-sampling Tech- nique) – A data augmentation method used to 

balance imbalanced datasets by generating synthetic samples for the minority class. 

• CalibratedClassifierCV – A scikit-learn wrapper that enhances the reliability of predicted 

probabilities by applying post-training calibration techniques like Platt scaling or isotonic regression. 

• Confidence Score – The model’s probabilistic estimate of the predicted class. In this paper, it refers to 

the calibrated probability that a sample is classified as potable. 
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TABLE V- COMPACT DISPLAY OF FEATURE-WISE TEST CASE PREDICTIONS 

 

Case Features (Split Line) Prediction Conf. 

 pH=7.0, Hardness=145,   

1 Solids=25000, 

Chloramines=7.5, 

Sulfate=375, 

Conductivity=450, 

Potable 71.73% 

 Org. Carbon=10.2, 

THMs=60, Turb=4.0 

  

 pH=5.9, Hardness=130,   

2 Solids=18000, 

Chloramines=6.1, 

Sulfate=330, 

Conductivity=400, 

Not Potable 54.47% 

 Org. Carbon=9.8, 

THMs=100, Turb=4.8 

  

 pH=8.1, Hardness=160,   

3 Solids=29000, 

Chloramines=8.0, 

Sulfate=420, 

Conductivity=470, 

Potable 96.71% 

 Org. Carbon=11.1, 

THMs=80, Turb=3.2 

  

 pH=6.2, Hardness=110,   

4 Solids=21000, 

Chloramines=6.5, 

Sulfate=200, 

Conductivity=410, 

Not Potable 90.24% 

 Org. Carbon=9.0, THMs=35, 

Turb=5.1 

  

 pH=7.5, Hardness=142,   

5 Solids=27000, 

Chloramines=7.3, 

Sulfate=380, 

Conductivity=455, 

Potable 80.91% 

 Org. Carbon=10.5, 

THMs=65, Turb=4.5 

  

 pH=6.0, Hardness=150,   

6 Solids=23000, 

Chloramines=6.7, 

Sulfate=250, 

Conductivity=430, 

Not Potable 60.22% 

 Org. Carbon=9.7, THMs=45, 

Turb=3.8 

  

 pH=8.4, Hardness=135,   

7 Solids=28000, 

Chloramines=8.5, 

Sulfate=410, 

Potable 93.89% 
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Conductivity=480, 

 Org. Carbon=10.8, 

THMs=70, Turb=2.9 

  

 pH=5.5, Hardness=125,   

8 Solids=20000, 

Chloramines=5.9, 

Sulfate=195, 

Conductivity=390, 

Not Potable 85.34% 

 Org. Carbon=8.5, THMs=40, 

Turb=4.2 

  

 pH=7.8, Hardness=148,   

9 Solids=26000, 

Chloramines=7.6, 

Sulfate=370, 

Conductivity=460, 

Potable 88.65% 

 Org. Carbon=10.6, 

THMs=77, Turb=4.0 

  

 pH=6.8, Hardness=132,   

10 Solids=24000, 

Chloramines=6.9, 

Sulfate=310, 

Conductivity=420, 

Potable 69.12% 

 Org. Carbon=9.2, THMs=60, 

Turb=4.7 

  

 

• XGBoost (Extreme Gradient Boosting) – A fast, regu- larized gradient boosting algorithm widely 

used for high- performance classification and regression tasks on tabular data. 

• Streamlit – An open-source Python framework used to deploy machine learning models through 

interactive web applications without the need for traditional front-end development. 
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