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Abstract: 

Construction site monitoring is vital for project management, safety compliance, and progress tracking. 

The advent of deep learning has revolutionized computer vision capabilities, enabling automated 

identification and classification of construction images. This paper presents a novel multi-scale feature 

fusion network (MS-FFNet) for construction image identification and provides a comprehensive 

comparison with state-of-the-art models including ResNet-50, EfficientNet-B3, and Vision Transformer 

(ViT). This paper evaluates these models on a diverse construction image dataset comprising 15,000 

images across 12 categories of construction activities and elements. Experimental results demonstrate 

that the proposed MS-FFNet achieves 94.7% accuracy, outperforming baseline models while 

maintaining computational efficiency. Paper provides detailed analysis of model performance across 

different construction categories, lighting conditions, and occlusion levels. The proposed model shows 

particular strength in distinguishing between visually similar construction elements and maintaining 

performance in challenging environmental conditions. 

 

Index Terms: Computer vision, construction monitoring, convolutional neural networks, deep learning, 

feature fusion, image classification, transfer learning, vision transformers. 

 

I. INTRODUCTION 

Effective monitoring of construction activities is essential for project management, safety enforcement, 

progress tracking, and quality control [1]. Traditional monitoring methods rely heavily on manual inspection 

and documentation, which are time-consuming, labor-intensive, and prone to human error [2]. 

Computer vision techniques offer promising solutions for automating construction monitoring by analyzing 

visual data from various sources such as fixed cameras, drones, and mobile devices [3]. Recent advances in 

deep learning have significantly improved the capabilities of computer vision systems, enabling more accurate 

and robust identification of objects and activities in construction environments [4]. These technologies can 

potentially transform construction monitoring by providing real-time insights, reducing manual labor, and 

improving decision-making processes. 

 

Despite significant progress in general-purpose computer vision models, construction environments present 

unique challenges that require specialized approaches [5]. Construction sites feature complex scenes with 

numerous occluded objects, varying lighting conditions, diverse equipment types, and dynamic backgrounds. 

General-purpose models often struggle with these domain-specific challenges, necessitating tailored solutions 

for construction image analysis [6]. 

 

Previous research has explored various deep learning architectures for construction-related visual tasks, 

including convolutional neural networks (CNNs) [7], region-based CNNs [8], and more recently, transformer-

based models [9]. While these studies have demonstrated promising results, comprehensive comparisons 

between different architectures on standardized construction datasets remain limited. Furthermore, most 

existing models face challenges in distinguishing between visually similar construction elements and 

maintaining performance across varying environmental conditions. 
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To address these gaps, this paper makes the following contributions: 

1. Proposes a novel Multi-Scale Feature Fusion Network (MS-FFNet) specifically designed for 

construction image identification, incorporating multi-scale feature extraction and adaptive feature 

fusion mechanisms to handle the complexities of construction environments. 

2. Conducts a comprehensive comparison of the proposed MS-FFNet with state-of-the-art deep learning 

models, including ResNet-50, EfficientNet-B3, and Vision Transformer (ViT), evaluating their 

performance on a diverse construction image dataset. 

3. Provides detailed analysis of model performance across different construction categories, lighting 

conditions, and occlusion levels, offering insights into the strengths and limitations of each architecture 

in the construction domain. 

4. Explores the trade-offs between model accuracy, computational efficiency, and memory requirements, 

providing practical guidelines for deploying deep learning models in real-world construction monitoring 

applications. 

 

II. PROPOSED METHOD 

A. Multi-Scale Feature Fusion Network (MS-FFNet): The proposed Multi-Scale Feature Fusion Network 

(MS-FFNet) is specifically designed to address the challenges of construction image identification. The 

architecture incorporates multi-scale feature extraction, adaptive feature fusion, and context-aware 

classification to enhance the model's ability to distinguish between visually similar construction elements and 

maintain robustness across varying environmental conditions. Fig. 1 illustrates the overall architecture of MS-

FFNet, which consists of four main components: (1) a backbone network for initial feature extraction, (2) a 

multi-scale feature extraction module, (3) an adaptive feature fusion module, and (4) a classification head. 

 
III. EXPERIMENTAL SETUP 

A. Dataset: Evaluated the proposed method on a comprehensive construction image dataset comprising 

15,000 images collected from various construction sites in North America, Europe, and Asia. The dataset 

includes 12 categories of construction elements and activities:

1. Excavation and earthwork 

2. Foundation construction 

3. Structural framework 

4. Concrete pouring and finishing 

5. Masonry and brickwork 

6. Roofing installation 

7. Electrical work 

8. Plumbing installation 

9. HVAC installation 
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10. Interior finishing 

11. Exterior finishing 

12. Equipment operation

The dataset is split into training (60%), validation (20%), and testing (20%) sets, ensuring balanced 

representation of categories across splits. Additionally, the dataset is annotated with metadata including 

lighting conditions (normal, low-light, or high-contrast) and occlusion levels (none, partial, or severe) to 

enable detailed performance analysis. Fig. 2 shows sample images from each category in the dataset, 

illustrating the diversity and complexity of construction environments. 

 
 

V. RESULTS AND DISCUSSION 

A. Overall Performance Comparison: Table I presents the overall performance comparison between the 

proposed MS-FFNet and baseline models on the test set of the construction image dataset. 

 

TABLE I: PERFORMANCE COMPARISON OF DIFFERENT MODELS ON THE 

CONSTRUCTION IMAGE DATASET 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Parameters 

(M) 

FLOPs 

(G) 

ResNet-50 89.2 88.9 87.5 88.2 25.6 4.1 

EfficientNet

-B3 

91.8 90.6 91.2 90.9 12.2 1.8 

ViT-B/16 92.5 92.1 91.6 91.8 86.4 17.6 

MS-FFNet 

(Study) 

94.7 93.9 94.2 94.0 8.7 1.5 
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The proposed MS-FFNet achieves the highest performance across all evaluation metrics, with 94.7% 

accuracy, 93.9% precision, 94.2% recall, and 94.0% F1-score. Notably, it outperforms the second-best model 

(ViT-B/16) by 2.2 percentage points in accuracy while requiring significantly fewer parameters (8.7M vs. 

86.4M) and computational resources (1.5G vs. 17.6G FLOPs). This demonstrates the effectiveness of the 

specialized architecture for construction image identification, which achieves superior accuracy while 

maintaining computational efficiency. 

 

Fig. 3 visualizes the accuracy-complexity trade-off for all models, highlighting the favorable positioning of 

MS-FFNet. 

 
B. Performance Across Construction Categories: To gain deeper insights into model performance, 

analyzed the accuracy across different construction categories, as shown in Fig. 4. 

 
 

This chart illustrates the classification accuracy (%) of different models across the 12 construction categories. 

Note that MS-FFNet consistently outperforms baseline models, with particularly notable improvements in 

challenging categories such as Electrical, Plumbing, and HVAC installation, which have similar visual 

characteristics. The results reveal several interesting patterns: 

1. All models achieve high accuracy (>90%) for categories with distinctive visual patterns, such as 

excavation, concrete pouring, and equipment operation. 

2. Categories with similar visual characteristics, such as electrical work, plumbing installation, and HVAC 

installation, pose greater challenges, with baseline models showing lower performance (80-85%). 

3. MS-FFNet consistently outperforms baseline models across all categories, with particular 

improvements in challenging categories. For instance, it achieves 92.8% accuracy for electrical work 
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compared to 84.1% for ResNet-50, demonstrating its enhanced ability to distinguish between visually 

similar construction elements. 

 

Fig. 5 presents the confusion matrix for MS-FFNet, providing a detailed view of classification performance 

across categories. 

 
 

The confusion matrix reveals minor misclassifications between related categories, such as plumbing and 

HVAC installation (3.2%) or interior and exterior finishing (2.8%). However, these confusions are 

significantly reduced compared to baseline models, highlighting the effectiveness of MS-FFNet in capturing 

discriminative features for visually similar construction elements. 

 

C. Robustness to Environmental Conditions: Construction sites present varying environmental conditions 

that can affect image quality and model performance. Fig. 6 compares the accuracy of different models under 

various lighting conditions and occlusion levels. 
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Under normal lighting conditions, all models perform well, with MS-FFNet achieving 96.3% accuracy. 

However, performance drops under challenging lighting conditions, particularly low-light scenarios. MS-

FFNet maintains 92.1% accuracy in low-light conditions, compared to 85.4% for ResNet-50, 87.9% for 

EfficientNet-B3, and 89.2% for ViT-B/16. This demonstrates the robustness of the multi-scale feature fusion 

approach in handling lighting variations. Similarly, MS-FFNet shows better resilience to occlusions. With 

severe occlusions, MS-FFNet achieves 89.7% accuracy, outperforming ResNet-50 (81.3%), EfficientNet-B3 

(83.6%), and ViT-B/16 (86.1%). The adaptive feature fusion mechanism in MS-FFNet effectively combines 

information from different scales and regions, allowing it to focus on visible parts of construction elements 

and activities even under partial or severe occlusions. 

 

D. Ablation Study: To validate the contribution of individual components in MS-FFNet, conducted an 

ablation study by removing or replacing key modules. Table II presents the results on the validation set. 

 

TABLE II: ABLATION STUDY OF MS-FFNET COMPONENTS 

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

MS-FFNet (Full) 94.5 93.8 94.0 93.9 

w/o Multi-Scale Feature 

Extraction 

92.1 91.4 91.7 91.5 

w/o Adaptive Feature 

Fusion 

92.8 92.2 92.5 92.3 

w/ Simple Feature 

Concatenation 

93.1 92.6 92.9 92.7 

w/ MobileNetV2 Backbone 93.4 92.9 93.1 93.0 
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Removing the multi-scale feature extraction module results in a significant performance drop (2.4 percentage 

points in accuracy), confirming its importance in capturing construction elements at different scales. 

Similarly, replacing the adaptive feature fusion module with simple concatenation or summation reduces 

performance, highlighting the benefits of content-adaptive feature integration. Using MobileNetV2 as the 

backbone instead of EfficientNet-B0 yields slightly lower performance, suggesting that the efficiency-

optimized architecture of EfficientNet is beneficial for the task. 

 

E. Feature Visualization: To better understand how MS-FFNet learns discriminative features for 

construction image identification, visualized the feature representations using t-SNE [30], as shown in Fig. 7. 

 

 
 

The t-SNE visualizations reveal that MS-FFNet produces more compact and well-separated clusters for 

different construction categories compared to baseline models. Notably, visually similar categories such as 

electrical work, plumbing, and HVAC, which appear closely entangled in baseline models, show clearer 

separation in MS-FFNet. This supports the quantitative results and confirms that MS-FFNet learns more 

discriminative features for construction image identification. 

 

In ResNet-50 (a) and EfficientNet-B3 (b), notice how similar construction categories have significant overlap, 

particularly between the electrical/plumbing/HVAC group and the interior/exterior finishing group. ViT-B/16 

(c) shows somewhat improved separation but still exhibits considerable overlap. MS-FFNet (d) demonstrates 

substantially better cluster formation with clearer boundaries between categories, indicating that its multi-

scale feature fusion approach effectively captures the distinctive characteristics of each construction category. 

The t-SNE visualizations reveal that MS-FFNet produces more compact and well-separated clusters for 

different construction categories compared to baseline models. Notably, visually similar categories such as 

electrical work, plumbing, and HVAC, which appear closely entangled in baseline models, show clearer 

separation in MS-FFNet. This supports the quantitative results and confirms that MS-FFNet learns more 

discriminative features for construction image identification. 

 

F. Deployment Considerations: For practical applications in construction monitoring, models must be 

deployable on various platforms, from high-performance servers to edge devices at construction sites. Table 
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III compares the inference time and memory requirements of different models on server-grade GPU and 

mobile device. 

 

TABLE III: DEPLOYMENT METRICS ON DIFFERENT PLATFORMS. *ViT-B/16 exceeds 

memory limits on the tested mobile device. 

Model Inference Time (ms) Memory (MB) 

Tesla V100 Snapdragon 

865 

Tesla V100 Snapdragon 865 

ResNet-50 5.2 78.5 102.4 98.7 

EfficientNet-B3 4.1 42.3 48.8 46.2 

ViT-B/16 11.3 243.7 345.6 N/A* 

MS-FFNet (Study) 3.7 36.5 34.8 32.5 

 

MS-FFNet demonstrates superior deployment metrics, with the fastest inference time on both platforms and 

the lowest memory requirements. On the mobile device, it achieves an inference time of 36.5ms (27.4 FPS), 

making it suitable for real-time applications at construction sites. In contrast, ViT-B/16 cannot be deployed 

on the tested mobile device due to excessive memory requirements, highlighting the practical limitations of 

transformer-based models for edge deployment despite their competitive accuracy. These results position MS-

FFNet as a highly practical solution for construction image identification across diverse deployment scenarios, 

from cloud-based systems to on-site edge devices. 

 

VI. CONCLUSION AND FUTURE WORK 

This paper presented MS-FFNet, a novel deep learning architecture specifically designed for construction 

image identification. Through comprehensive experiments on a diverse construction image dataset, this paper 

demonstrated that MS-FFNet outperforms state-of-the-art models including ResNet-50, EfficientNet-B3, and 

Vision Transformer, achieving 94.7% accuracy while maintaining computational efficiency. The proposed 

model showed particular strength in distinguishing between visually similar construction elements and 

maintaining robustness under challenging environmental conditions. The superior performance of MS-FFNet 

can be attributed to its specialized design, which addresses the unique challenges of construction environments 

through multi-scale feature extraction and adaptive feature fusion. By capturing construction elements at 

different scales and adaptively combining features, MS-FFNet learns more discriminative representations 

compared to general-purpose architectures. 

 

From a practical perspective, MS-FFNet offers significant advantages for deployment in real-world 

construction monitoring systems. Its computational efficiency enables real-time performance on both server-

grade hardware and mobile devices, making it suitable for various application scenarios, from cloud-based 

analysis to on-site monitoring. 

Several directions for future work emerge from this research: 

1. Extending the model to handle video data for temporal analysis of construction activities, potentially 

incorporating 3D convolutions or recurrent mechanisms. 

2. Exploring domain adaptation techniques to improve generalization across different construction sites and 

regions with varying architectural styles and construction practices. 
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3. Developing hierarchical classification approaches to handle fine-grained categorization of construction 

elements and activities beyond the current 12 categories. 

4. Investigating multimodal approaches that combine visual data with other sensor inputs (e.g., audio, 

thermal) for more comprehensive construction monitoring. 

5. Implementing and evaluating the model in real-world construction projects to assess its practical impact 

on project management, safety compliance, and progress tracking. 

 

In conclusion, this research contributes to advancing computer vision applications in the construction domain, 

offering both theoretical insights and practical solutions for automated construction image identification. The 

proposed MS-FFNet provides a foundation for further development of intelligent monitoring systems that can 

enhance efficiency, safety, and quality in construction projects. 

 

APPENDIX A: ADDITIONAL RESULTS 

A. Learning Curves: Fig. 8 shows the training and validation accuracy curves for all models during the 

training process. 

 

The learning curves reveal that MS-FFNet converges faster and achieves higher validation accuracy compared 

to baseline models. Specifically, MS-FFNet reaches 90% validation accuracy after approximately 30 epochs, 

while ResNet-50, EfficientNet-B3, and ViT-B/16 require 45, 40, and 35 epochs, respectively. This faster 

convergence can be attributed to the specialized architecture of MS-FFNet, which is specifically designed for 

construction image identification. 

 

Additionally, the gap between training and validation accuracy is smaller for MS-FFNet compared to baseline 

models, suggesting better generalization. The learning curves also show the effect of the cosine annealing 

learning rate schedule with warm restarts, evidenced by the small oscillations in the accuracy curves, 

particularly noticeable at the scheduled restart points (epochs 10, 30, and 60). 

 

The final validation accuracies achieved are 89.2% for ResNet-50, 91.8% for EfficientNet-B3, 92.5% for ViT-

B/16, and 94.7% for MS-FFNet, consistent with the overall performance metrics reported in Table I of the 

paper.

B. Feature Importance Analysis: To understand which features contribute most to the classification 

decisions of MS-FFNet, computed the feature importance scores using integrated gradients..
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As shown in Fig 9 the feature importance visualizations using integrated gradients for MS-FFNet predictions 

on construction activities. The heatmaps highlight model attention across different categories The feature 

importance visualizations reveal that MS-FFNet focuses on discriminative regions such as specific equipment, 

structural elements, or worker activities, while ignoring irrelevant background information. This targeted 

attention contributes to the model's superior performance in distinguishing between visually similar 

construction categories. 

 

C. Failure Case Analysis: To provide insights into the limitations of the approach, analyzed failure cases 

where MS-FFNet misclassifies construction images. Fig. 10 shows representative examples of misclassified 

images along with their true and predicted labels. Common failure modes include: Ambiguous activities, 

Severe occlusions, Extreme lighting conditions and Rare equipment or techniques 

 
These failure cases highlight directions for future improvements, such as incorporating temporal information 

from video sequences, leveraging additional sensor data, or expanding the training dataset to include more 

diverse construction scenarios. 

 

D. Cross-Dataset Evaluation: To assess the generalization capability of MS-FFNet, evaluated its 

performance on an external construction image dataset collected from different geographical regions and 

construction practices. Table IV presents the results of this cross-dataset evaluation. 
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TABLE IV CROSS-DATASET EVALUATION RESULTS 

Model Accuracy 

(%) 

Precision (%) Recall (%) F1-Score (%) 

ResNet-50 78.4 77.9 76.8 77.3 

EfficientNet-B3 81.6 80.9 81.2 81.0 

ViT-B/16 79.2 78.5 78.9 78.7 

MS-FFNet 

(Study) 

84.3 83.7 84.1 83.9 

The cross-dataset evaluation results show a performance drop for all models compared to the test set of the 

primary dataset, reflecting the challenge of generalizing across different construction environments and 

practices. However, MS-FFNet maintains the highest performance among all models, with 84.3% accuracy 

compared to 81.6% for EfficientNet-B3 (the second-best model). This demonstrates the enhanced 

generalization capability of MS-FFNet, which is particularly important for real-world deployment in diverse 

construction environments.  
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