

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

Structural Integrity and Safety of Building

Raunak Deswal¹, Dr. Deepak Verma²

¹Research Scholar, Assistant Professor² ^{1, 2}Department of Civil Engineering, UIET, MDU Rohtak

Abstract

In recent years we come across the increased number of fire accidents in the society. To understand the current scenario of this fire behaviour towards the building's context, a background study was started. The existing adequate measures were recommended for future adoptability. The not existing measures and inadequate measures were not recommended for future adoptability. The future adoptability recommendation column from the inferences table was considered as findings column. The findings were segregated from the inferences table. Two sub parameters were not exists. All other major, sub parameters were exists. The findings were summed up as per the requirements order. These results were discussed with the research requirements objectives towards the future perspective. Interpretation were given towards the not existing parameters. Codes provisions numbers and its objectives were given in the interpretation. The findings were compared with the research objectives. The findings were not supporting to any one of the research objectives. The hypothesis statement was concluded. This research study reveals the study area mall buildings exists with adequate measures and does not exist with two important measures. The existing adequate measures were recommended for future upcoming buildings. The not exists measures were recommended for its implementation to future upcoming buildings. The sample buildings are to be incorporated with not existing measures along with the existing adequate measures to meet the fire and life safety objectives. The research study was concluded. Future research scope was recommended from the same domain to all categories of buildings. New fire safety requirements preparation from these findings and its application towards the future upcoming were recommended. This approach will assure fire free buildings to future generation.

Keywords: Structural Integrity Assessment, Service Safety Structures, Maintenance Repair Failure

I. INTRODUCTION

The city infrastructures of transportations network, systemized communication system, well channelized water supply, uninterrupted electrical power supply, employment opportunities, health care facilities and education systems are providing the higher quality of life to city people. The Mall building concept is also incorporated to city infrastructures. These buildings are offering the quality house hold materials to city people. These buildings are providing variety of shops, indoor entertainment facilities, relaxations facilities, multi cuisine facilities, product launches, promotions, festivals and multi-level parking facilities within the building premises. These facilities are attracting the younger generation in a grater way. They are using these buildings for their formal discussion and gathering. The easy accessibility of

these buildings, internal air conditioning comfort and escalator facilities makes the people to spend their quantity time inside.

In weekends and all festival times these buildings are used as public gathering entertainment buildings by all age group of people. Hence Life safety has become as paramount importance in these buildings.

These multi vibrant activities, the multi storied height and the fixed glass construction for façade treatment of these buildings are required safety and security inside. It is the duty, responsibility of the architects and the construction industry professionals to assure fire safety and life safety to these buildings.

The background study was carried out from numerical data and fire affected buildings. Numerical Data Study: The nineteen years (From 2001 to 2018) fire accidents, property loss and lives loss numerical data were collected and displayed in a table. From the display the highest values and minimum values were identified. The total values, average values were calculated. The Graphs were prepared. The table display and the Graphs details are as follows: (Data Source: Tamil Nadu Fire cum Rescue Department)

Year	Number of f Accidents	fire Property loss in Crores	Human loss in numbers	
2000	16987	13.64	47	
2001	17697	15.79	112	
2002	18264	14.10	79	
2003	16109	24.57	89	
2004	16136	13.07	249 Highest value	
		Minimum value		
2005	15093	14.20	99	
	Minimum value			
2006	17442	27.74	65	
2007	21224	26.87	72	
2008	17433	53.17	69	
2009	21840	53.17	127	
2010	18311	24.60	75	
2011	22273	27.59	84	
2012	32,273	27.02	87	
	Highest Value			
2013	25109	42.55	75	
2014	24398	46.13	70	

 Table 1 Fire Accidents Numerical Data Analysis (period From 2000 TO 2018)

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

2015	19866	22.47	38
2016	25897	43.04	72
2017	21047	97.87 Highest Value	67
2018	22601	58.83	36 Minimum Value
Total Values	3,90,000	646.42	1612
Average Values	20,526.32	34.02	84.84

The number of fire accidents, property loss, lives loss and the failure measures of fire affected buildings from the background studies are indicated here that, the fire accident in buildings are increasing in recent past years and it has become a current thrusting problem among the society. Solutions are required to solve this problem.

II. RESEARCH METHODOLOGY

Passive Measures Code Provisions Details: The following code books provisions and its recommendations were used to drive the comprehensive research requirements. These Passive Measures comprehensive requirements are applied upon the sample buildings. Research type: The Quantitative Applied Research Type was used for Research Requirement Derivation. National Building Code of India (1997, 2005 & 2016): From Part - 4, Title is, "Fire and Life Safety". Provisions Number from 2.00 to 4.17. Passive Measures elements details considered from Provision number 2.00 and all its sub divisions. Fire Zone details, occupancy and structural member's details were considered from Provision number 3.00 and all its subdivisions.

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

III. DATA COLLECTION AND ANALYSIS

This chapter discusses the data collection, analysis of data collection inferences of analysis and segregation of outcomes from the inferences table.

Data collection: CMDA Approved drawings were used for data collection. The length, breath, height and its construction materials data were collected in all directions. The dimensional measurements and the materials details are given in the research report in qualitative description method. The relevant drawings were enclosed at required places. The Site plan, Basement Floor Plans, Ground Floor Plan with all Upper Floor Plans and Sectional Elevations are enclosed for references.

The check list was used for identifying the measures and confirming the measures existence and nonexistence from the sample buildings.

Analysis: The analysis was carried out in a table the parameter name, the collected Physical dimensions of that parameter, the codes recommendations about that parameter, the comparison of that parameter with codes recommendations and result of that measure were placed in adjacent columns of a table. All columns were correlated to relevant parameters. If the physical dimensions were equal or above the codes recommended dimensions, that parameter was considered as adequate measure. If the physical dimensions were less than the code recommended dimensions that parameter was considered as inadequate measure. If a measure does not exist, that parameter was also considered as inadequate measure. The adequate and inadequate two types of results were obtained from this research analysis.

Inferences Table: The data collection and the analysis were carried out for all six sample buildings. Inferences are prepared from these six analysis tables details. The parameters and all sub parameters were placed in a column. The existing adequate measures, existing but inadequate measures and non-

existing measures were placed in adjacent column. The recommendation of future adoptability was given in the last column.

The existing adequate measures were recommended for future adoptability. The existing with inadequate measures and non existing measures (NOT EXISTING) were not recommended for future adoptability. The recommendation column of inferences table was considered as findings column. All the findings were segregated from this column.

Accessibility by Road and Reach Ability of Building: The building is accessed by 40m wide high road on its north side and 30m wide road on its west side. These roads are connecting the main parts of the city. Other two sides are surrounding with commercial buildings.

Main Entry and Exit Gates Width: The north side the building is provided with 12meters wide main gate for pedestrian entry. The west side it is provided with 20m wide main gate for vehicle entry. Both the entries are located at the midpoint of the building. On west side two entry cum exit gates are provided at both ends. Its width is 7.6m

Building Set Backs: The building is having 20 m wide set backs on its north and west side including open space reservation. An 8m wide setback is provided on east and south side of the building.

External Stair Cases: one external stair case is mentioned as fire escape stair case and is provided nearer to North West corner of this building.

Figure 1 Site Plan – Sample One

Findings: This building is provided with good accessibility and reaches ability from its two sides of the main roads. Two main entry gates and two numbers of entries cum exits gates are provided with adequate width. The firefighting vehicle and ambulatory services can enter the building premises and exit smoothly.

The building is having adequate setbacks widths in all four sides. The number of fire fighting and ambulatory services vehicles can stand around the building for fighting and rescue operation. Required free spaces are available for the fire brigades to run around the building for fighting operation. One

external stair case mentioned as fire escape stair case with adequate width is provided in this building. This will facilitate the fire fighting professionals to get themselves inside of the building and the stair case will be used for ascending and descending purposes during fighting operation.

(b) Building Planning Parameters:

The total area of the site is 12460 sqm. The built-up area on the ground floor is 3599 sqm. The average plot coverage of the building is 40 %. Floor space index is 2.25.

Space planning: The details are given in the Table below;

Floor	Built-up	Service area	Parking area	Four-	Two-wheeler in
	area. Sqm	sqm	sqm	wheeler	nos
				in nos	
Second	88.00		6301	142	200
basemen					
l First	95.00	116	6178	138	200
basement	55.00	110	0178	156	200
Lower	3599.00	694	1372	30	300
ground					
Ground floor	3599.00		1372	30	100
First	4793.40	33	1372	30	-
Second	4135.31	33	1372	30	-
Mid level			1372	30	-
Third	4184.00	33	1372	30	-
Fourth	4314.47	76.76	1372	30	-
Fifth	2145	39.46	1372	30	-
Mid-level			1372	30	-
Mezzanine	621.97	20.83	1372	30	-
Sixth	3868.19	127.51	1372	30	-
Terrace	94.00	4794		170	-
Total	27938.34	1373.56	30905	780	800

Table 1 Space Planning Details of Sample One

Figure 2 Ground Floor Plan – Sample One

Figure 3 Lower Ground Floor Plan – Sample One

Figure 5 Second Floor Plan – Sample One

Figure 6 Third Floor Plan – Sample One

Figure 7 Fourth Floor Plan – Sample One

Figure 8 Fourth Mezzanine Floor Plan – Sample One

Figure 9 Fifth Floor Plan – Sample One

Building Dimensions: The site gives the dimensions 143m on its west side, 92 m on its north side, 194 m on the east side and 127 m on the south side. The east side site is not straight and it is inclined.

Over all site area is 12460 sqm. After the set back the ground floor is giving the dimension of 97m in length wise and67m in breath wise. The shape of the building is rectangle. It is a single unit development from the basement floor to the terrace floor. The building is having two basement floors, one lower ground floor, one ground floor, five upper floors, one mezzanine floor and terrace floor. The each basement floor and lower ground floor height is 2.82m ground floor height is 4.58m,first,second and third each floor height is 4.26m, the fourth floor height is 5.55m, the fifth floor is theatre its foyer, seating, mezzanine, projection room and false ceiling height is 10.81m. Above these the parking parapet height is 3.65m, lightning arrester height is 6.4m and lightning arrester tower height is 2.38m. The height of the basement floor is 5.64m. The overall height of the building from the ground level to tip of the lightning arrester is 46.30m.

Atrium, Circulation and Ventilation: The atrium is located in the middle area of the building; it is semi circular in shape. It occupies 175sqm area on each floor including its corridor space. It is the main focal point of the building. The atrium is covered with transparent material for lighting purpose. The crowed is attracted by this space only. It divides the crowed and directs them for various functions on each floor. The atrium around the corridor serves the building for smooth circulation. It is a centralized air condition building; there are no window provisions except in few areas.

Core design: The parking area is provided along with two ramps. The ramps are for multilevel car parking for up and down driving purpose. One ramp is provided around the lift car and staircase by a separate enclosure. Two cores are provided in the east side of the building. One fire escape stair case is provided on the North West side. The centre distance in between the core is 55m. Single lift without stair is provided for loading and unloading purpose on the south end. Individual single flight stairs are provided in side of the shops for mezzanine floors purposes in all floors.

Open Spaces: Small size shaft openings are provided for cabling, AHU and other services purpose. A long wider duct is provided in between the car lifting, parking area and other functional area, this long duct is used for taking sewer pipe line from all floors. There is no open space provision for interaction or ventilation purpose in the middle of the building.

Compartmentation of Each Floor: The outer walls thickness is 0.23 m. provided with 0.025m thick Cement plastering is on both the sides. The inner walls are constructed with 0.15mthickness. The provision of compartmentation at every 750 sqm as per regulation is not provided in all floors.

Findings: Space allocation, grouping of activities, planning of each floor, circulation, ventilation and Atrium planning with population smooth movements are follows the planning standards. Compartmentations provision is not provided in this building.

(c) Occupancy Requirements parameter (Function of the Building):

First and second basement floors, south wing of the building in all floors and terrace floor allocated for four cum two wheeler parking.

The lower ground floor is allocated for hyper market as well as surface level parking. The ground, first, second and third floors are allocated for shopping. The fourth floor is allocated for food court and family entertainment activities. The fifth floor and mezzanine floor allocated for theatre and related activities.

Findings; The occupancy features are as per the mall's requirements.

Ref Element		Existing	Recommended	Evaluated	Resistance		
		dimension	dimension, (Colum	n dimension	Adequacy		
		(Column –A)	-B)	(From	details		
				Column A- B)			
(a)	Site Planning Parameters Evaluation						
	Road width	North – 40m West	18m 18m	22m more	Adequate		
		= 30m		12m more			
	Entry point	North - 12m	4.5m	7.5m more	Adequate		
		West - 20m	4.5m	n 15.5m more			
	Exit point	North 7.6	4.5m	3.1m more	Adequate		
		South 7.6 m	4.5m	3.1m more			
	Set backs	North&West20m	8m	12m more	Adequate		
		South & East 8m	8m	Sufficient			
	External Stair case	4m wide stair cas	e4m wide stair case	stair case	Adequate		
		is provided in nort	hwith separate	provided as per			
		side	enclosure must	the requirement			
			provided				
(b)	Building Planning	g Parameters Evalu	lation		-		
	Outer Brick wall	0.23m thick wall	0.17 m thick 0	.06m More	Adequate		
	thickness						
	Inner brick wall	0. 15m thick	0.17 m thick0	0.02m thick less	Inadequate		
	thickness		required				
	Compartmentation	Not existing	750sm once	Not existing	Inadequate		
			provision				
	Type one	Compartmentation	Compartmentation N	Not existing	Inadequate		
	construction	provision is not	construction is				
		existing.	considered as type				
			one construction				
(c)	Occupancy Requi	rements Paramete	rs Evaluation				
	Occupancy Featur	resShops, food	Shops, food court,	Activities are	Adequate		
	of different activitie	es court,	entertainment, e	xisting as per			
		entertainment,	relaxation and n	nall`s			
		relaxation and	parking activitiesr	ecommendations			
		parking	are recommended				
		activities are					
		existing					

Table 2 Heat Resistance Evaluation of Sample One

(d)	Life Safety Elements in the Escape Routes Planning Parameters Evaluation						
	Parking drive ways width in Basement & ground floors	7.2m	7m,for two way	0.2m more	Adequate		
	Ramp width	3.7m	3.5m	0.2m more	Adequate		
	Corridor width	4.2,3.2 ,2.5m	2.4m &	1.8, 0.8, 1m&	Adequate		
	&head room height	Headroom height 3.2m	2.4m	0.8m more			
	Means of egress Exit Width	2.5m	2.4 m	0.1m more	Adequate		
	Stair case width	4m wide ,each flight 2m width is existing	4m wide, each flight 2m width are to be provided	Stair case width is provided as per the requirement	Adequate		
(e)	Structural Stability	Parameters Eva	luation				
	R.C.C. Column size	0.6X0.9m and 0.6X1.2m	0.54 x 0.54 m	0.06 x0.36 and0.06x 0.66more	Adequate		
	R.C.C. Beam	0.5 mX0.6 m in size	0.42X0.42m	0.08 x0.18 m, more	Adequate		
	Brick wall 0.23m thick wall		0.17 m thick	0.06m More	Adequate		
	R.C.C. Roof slab	0.375m thick	0.280 thick	0.095m More	Adequate		
	R.C.C.column cover	0.12m in all sides	0.04min all fou sides	r0.08m more	Adequate		
	R.C.C. Beam cover	0. 12m	0.07m in all sides	0.05m more	Adequate		
	Plastering	0.025m on both sides	0.025m in both sides	Sufficient	Adequate		
	R.C.C. Roof slab cover	0.12m on both the	0.055m in both the sides	0.065m More	Adequate		
(f)	Fire Rated Recomm	ended Materials	Construction Page	arameters Evaluation	on		
	Foundation, Column, Beam & floor and roof slabs	R.C.C. work with cement cove provided	hR.C.C& brick rworks are recommender	Recommended materials used	Adequate		
	Outer & Inner wall	Brick worl withCement plastering provided	kR.C.C, hollow blocks, brick are recommender	v Recommended e materials used	Adequate		
	Floor finishing	Grand Marble stone	Hard rigid materials used	Recommended materials used	Adequate		

E-ISSN: 2582-8010 • Website: <u>www.ijlrp.com</u> • Email: editor@ijlrp.com

False	ceiling	& Gypsum	, board,	Gypsum, Plaster	Recommended	Adequate
egress a	rea	plaster c	of parries,	of parries	materials used	
		Stainless	s steel			
		frame				
Interior	finishing	&Plastic	emulsion	Less fire spread	Recommended	Adequate
Atrium	top Coverag	ge paint fin	ish on the	materials allowed	materials used	
		interior	&The	Transparent light	t	
		atrium	10mm	weight materials	5	
		thick tr	ansparent	allowed		
		fiber gla	uss, rested			
		on beam	n by			
		holting				
Elevatio	on finishing	Wired f	iber glass	Aggregate finish	Recommended	Adequate
		&	exposed	allowed	materials used	
		aggrega	te finish			
		on the b	lock			
		work				
						-

IV. Conclusion

This research finding reveals the passive measures condition of mall buildings in the study area. These buildings are existing with adequate measures and inadequate measures (not existing measures). The existing measures) construction should become mandatory for future upcoming buildings. In all sample buildings inadequate measures (not existing measures) are to be constructed and are to be incorporated with the existing adequate passive measures. These full-fledged implementations of fire and life safety passive measures will meet the objectives in future.

References

- [1] J. Jiang, Nonlinear thermomechanical analysis of structures using OpenSees, PhD Dissertation, University of Edinburgh, Edinburgh, UK, 2012.
- [2] J. Jiang, G.Q. Li, A.S. Usmani, Influence of fire scenarios on progressive collapse mechanisms of steel framed structures, Steel Constr. Des. Res. 7 (2014) 169–172.
- [3] J. Jiang, G.Q. Li, A.S. Usmani, Progressive collapse mechanisms of steel frames exposed to fire, Adv. Struct. Eng. 17 (3) (2014) 381–398.
- [4] J. Jiang, A.S. Usmani, G.Q. Li, Modelling of steel-concrete composite structures in fire using OpenSees, Adv. Struct. Eng. 17 (2) (2014) 249–264.
- [5] J. Jiang, A.S. Usmani, Modelling of steel frame structures in fire using OpenSees, Comput. Struct. 118 (2013) 90–99. 38 J. Jiang et al. / Case Studies in Fire Safety 4 (2015) 28–38
- [6] Chen, Z., & Wang, J. (2021). Dynamic Analysis of Tall Building Structures under Gravitational Loads: A Review. *Journal of Structural Dynamics*, 17 (4)

- [7] Chopra, A. K. (2017). Seismic Design of Tall Buildings: Challenges and Solutions. *Structural Engineering International*, 27 (2)
- [8] Di Sarno, L., Sica, G., & Janssens, N. (2020). Innovations in Seismic-Resistant Structural Systems for Tall Buildings: A Review. *Journal of Structural Engineering*, 146 (6)
- [9] Han, J., Li, Y., & Zuo, J. (2020). Sustainable Materials for Tall Building Construction: A Review. *Sustainability*, *12* (5)
- [10] Johnson, C., & Lee, S. (2021). Innovations in Tall Building Materials: A Comprehensive Review. Journal of Advanced Construction Materials, 12 (2)
- [11] Kareem, A., & Kijewski-Correa, T. (2018). Performance-Based Seismic Design of Tall Buildings: Advances and Challenges. *Earthquake Engineering and Structural Dynamics*, 47 (2)
- [12] Li, H., Zhang, L., Liu, J., & Chen, Z. (2020). Application of Building Information Modeling (BIM) in Tall Building Construction: A Review. *Automation in Construction*, 119 (1)
- [13] Novak, D., Stojadinović, B., & Mirjani, R. (2020). Innovative Structural Systems for Tall Buildings: A Review. *Engineering Structures*, 208
- [14] Smith, A., Johnson, B., & Williams, C. (2018). Wind Effects on Tall Building Structures: A Review. *Journal of Structural Engineering*, 144(6)
- [15] Wang, J., & Chen, Z. (2020). Dynamic Analysis of Tall Building Structures under Wind Loads: A Review. Journal of Wind Engineering and Industrial Aerodynamics, 195.
- [16] Wong, J. K. W., Wong, K. Y., & Kwok, Y. L. (2019). Innovations in Tall Building Construction: A Review. *Journal of Construction Engineering and Management*, 145(2)
- [17] Xue, J., Wang, J., & Li, V. C. (2021). Advanced Materials for Tall Building Construction: Challenges and Opportunities. *Construction and Building Materials, 293*
- [18] Everson Kandare, Pietro Di Modica, Venkata S. Chevali and Geoff A. Gibson, (June 2016), "Evaluating the Heat Resistance of Thermal Insulated Sandwich Composites Subjected to a Turbulent Fire", Fire and Materials Journals, Volume: 40, issue: 4, P 586- 598.
- [19] Graham Spinardi, (February 2016)," Fire Safety Regulation: Prescription, Performance and Professionalism", Fire Safety Journal, Volume: 80, P 83-88
- [20] Jain. V. K. (2010), "Fire Safety in Buildings", New Age International Publication, New Delhi. India.
- [21] Jing Xin, Chong Fu Huang, (September2014), "Fire Risk Assessment of Residential Buildings Based on Fire Statistics from China", Fire Technology Journal, Volume: 50, Issue 5, P 1147-1161.
- [22] John, C., (2006), "Research and Thesis Writing", Stanford University Press Publication, California.
- [23] Kristin Andrée, Daniel Nilsson and Joakim Eriksson, (June 2016), "Evacuation Experiments in a Virtual Reality High- Rise Building: Exit Choice and Waiting Time for Evacuation Elevators", Fire and Materials Journal, Volume: 40, P 554-567.