

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 1

Technical Examination of Key-Value Store

Scalability

Nikhita Kataria

nikhitakataria@gmail.com

Abstract

Key value stores encapsulate data, metadata, a globally unique identifier and data attributes into a

single immutable entity termed an object. In an object store, objects are organized in a flat

address space i.e every object exists at the same level in a large scalable pool of storage. Key value

stores follow location independent addressing and are accessed via the unique identifier. Key value

stores are designed primarily to manipulate data sets that does not have a predefined data model

or in other words is unstructured. The key operations for an object store include retrieval (get),

store(put) and deletion(delete). In this survey, we aim to evaluate different classes of key values

stores in terms of feature set, design choices, architectures, performance and their adaptability in

the current market.

Keywords: Key Value Stores, Document Stores, Memory, Replication, Scalability, Caching, Read

Vs Write Performance

I. INTRODUCTION

Key value stores can be categorized into following categories based on the design approach, the object

format, replication policy, caching mechanisms, consistency aspects, discovery protocols etc. General

Key Value stores based on the classic key value store design approach of storing data in the form of

object value stores. Some examples include Redis, Memcached. Column Based stores often store

column entries as a continuous entry in the disk thus making the access faster. In graph based stores,

data is stored in the form of nodes and edges where nodes are instances of the objects and the

relationship among objects are represented using edges. HBase and Cassandra are based on this design.

Document based stores embed data in the form key value pairs and the associate metadata in the form of

documents. Some of the famous examples are MongoDB, Riak, Terrastore. There are other classes of

specialized key value stores designed to suit the needs of certain applications. Some examples are Pregel,

VertexDB etc.

There are various implementations of each of the classes mentioned above and the first step for this

research was to select the key value stores that should be studied in order to represent the rationale

behind these classes. Figure 1 represents the key value stores we explored. Next we selected the

representatives on the basis of popularity, adaptability, ease of use, features, scalability, flexibility and

reliability factors for each class of the key value stores. In the next few sections, we explore details of

the selected representative stores.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 2

TABLE I. RANKING BASED ON PROPERTIES

Category
Popularity Performance

Researched in this

paper

Regular Key

Value Stores

Redis

Memcached

BerkleyDB

TokyoCabinet

Voldemort

Dynamo

Redis

Tokyo Cabinet

BerkleyDB

Memcached

Voldemort

Dynamo

BerkleyDB

Memcached

Redis

Document

Based Key

Value Stores

CouchDB

Riak

OrientDB

MongoDB

Azure’s

Document DB

Apache

JackRabbit

Terrastore

CouchDB

Riak

OrientDB

MongoDB

Azure’s Document

DB

Apache JackRabbit

Terrastore

Riak

MongoDB

Column Based

Key Value

Stores

Cassandra

HBase

HyperTable

BigTable

Cassandra

HBase

HyperTable

BigTable

Cassandra

HBase

II. DOCUMENT BASED STORES

A. Riak

Riak has adopted its architecture from Amazon’s Dynamo with style variations. In general,

distributed key value stores follow architecture in lines with master and slave paradigm, Riak takes its

way off from this approach by treating all the nodes in the cluster equally responsible for the tasks

assigned to them. So from a user’s perspective it can contact any node and send a get, put or an update

request.

Riak uses consistent hashing to distribute data across cluster nodes, reducing data movement during

node failures and enhancing resilience. The 2¹⁶⁰-bit keyspace is split into partitions, grouped into virtual

nodes, which are assigned to physical nodes. This setup allows virtual nodes to be redistributed during

failures without relying on the physical node layout.

Riak organizes data in buckets, with each bucket holding keys. A binary hash is calculated for each

bucket/key pair and placed on an ordered ring, divided into partitions. Each virtual node controls one or

more partitions. For data versioning and causal consistency, Riak uses vector clocks to maintain multiple

object versions, which is useful in applications like malware analysis.

Cluster topology changes are shared through the gossip protocol, but in edge cases, it may overwhelm

network resources due to excessive messages. Riak follows an “always writable” design, ensuring

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 3

availability even during partitioned or degraded states. It uses a read-repair mechanism to synchronize

missing data and performs active anti-entropy tasks to fix data inconsistencies. However, Riak lacks a

built-in load balancer, requiring third-party solutions. The gossip protocol, while efficient in typical

conditions, may become a bottleneck in complex or irregular network environments.

B. MongoDB

MongoDB is a scalable, document-based key-value store with replication support. It consists of

configuration servers that manage metadata and shard servers that store data. Documents are divided

into chunks and replicated across shards. MongoDB supports replication through replica sets, where

documents are replicated across nodes.

The configuration servers store metadata such as chunk lists and shard ranges. MongoDB offers multiple

sharding policies: range-based, hash-based, and location-aware, making it highly adaptable. By default,

documents with similar shard key values are co-located on the same shard to enhance locality of

reference.

In MongoDB, writes are directed to the primary node, while reads are served by replicas, ensuring

high read availability. It also processes writes in batches to improve concurrency and optimize disk I/O.

Clients may see write results before they are fully propagated, as a write is considered successful once a

quorum of nodes processes it. MongoDB assigns priorities to nodes, with higher-priority nodes more

likely to win the election when the primary fails.

III. REGULAR KEY VALUE STORES

A. Redis

Redis separates read and write services: writes are handled by masters, and reads by clients, in a

"split-brain" model where subsystems are unaware of each other. The infrastructure ensures consistency

between masters and slaves, managed by the internal cluster manager, redis-trib. Redis uses hash slots

for sharding, where each slot is calculated using CRC16 of the key modulo 16384. A hash slot can

contain up to 2160 keys. When a new node is added, slots are reassigned, and clients accessing old

nodes will receive a "MOVED" error, directing them to the new location.

Redis is single-threaded, so large requests can delay other client interactions. It uses RESP (Redis

Serialization Protocol) for communication and a gossip protocol for node interactions. Redis'

performance benefits from pipelining and a Pub/Sub system, allowing clients to receive messages once

processing is complete.

B. Memcached

Memcached is an in-memory distributed cache designed to speed up web applications by caching

frequently accessed data. It uses a doubly linked list and hashmap for efficient key management, sorted

by access time with an LRU caching policy for eviction. Memory is organized into 1MB pages,

subdivided into chunks based on slab classes. On write, it finds the appropriate slab for the chunk, and

on read, it returns data from memory or fetches it from the database.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 4

However, Memcached allocates a 56-byte header for each key-value object, even for size 0 values,

introducing overhead.

C. Berkley DB

Berkeley DB differs from traditional KV stores by providing a library that integrates with

applications, rather than relying on a separate server application. It offers efficient in-memory key-value

storage, using hash tables or B+trees as the primary data structure. B+trees are used for indexing,

enabling fast lookups and efficient indexing.

Berkeley DB provides low-level APIs for replication, starting with all nodes and designating one as

the replication manager. Replication is system-wide, not entry-specific. It offers three replication

policies: None (no sync), All (sync to all), and Simple_Majority (sync to a subset of nodes). Like

MongoDB, it follows a write-to-master, read-from-replica model. It also supports partitioning data

across cluster nodes, and when reading, it combines data from multiple parts using indexes to optimize

searches, sending the result to the client. Sync parameters, including the option to delay syncing, can be

adjusted. For example, if a specific master is expected to handle both reads and writes, the sync to

replicas can be delayed.

While Berkeley DB simplifies programming, it may not appeal to developers seeking fully featured

solutions. It is better suited for those building custom key-value store systems, especially those familiar

with the complexities of highly available infrastructure.

Berkeley DB deviates from the paradigm followed by regular KV Stores by providing a library to

link with the applications rather than a separate server application. Berkeley DB is a library which

provides efficient in memory key value stores, where keys can be stores in hash tables or as B+trees.

BerkeleyDB uses B+trees as their primary data structure and builds indexes around the tree nodes for

efficient lookup. Also, B+ tress offer ease of indexing.

IV. COLUMN BASED STORES

A. Cassandra

Cassandra was developed to meet the need for a fast database for Facebook's Inbox Search. Known

for its scalability, it partitions data across cluster nodes using consistent hashing. Like DynamoDB, the

nodes are mapped to virtual spaces in a ring, with each space responsible for a set of keys. Load

balancing is achieved by moving lightly loaded nodes along the ring to relieve heavily loaded ones.

Each node coordinates the keys in its virtual space and replicates data to N-1 other nodes (N being the

replication factor). Cassandra offers replication policies like "Rack Aware," "Rack Unaware," and

"Datacenter Aware" for fine-tuning performance. It uses Zookeeper to manage the cluster, similar to

HBase.

Cassandra's performance is driven by indexing, utilizing Bloom filters to check for keys. It stores

keys in-memory up to a threshold, then writes to disk in a single operation, optimizing disk I/O. While

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 5

this experiment focuses on key-value pairs, it's important to note that Cassandra also maintains column

indexes for faster response times.

Cassandra uses the gossip protocol to propagate control states across nodes. During bootstrapping,

nodes sync data from pre-configured "seeds," which can be set in Zookeeper's config. Read/write

requests can be directed to any node. For writes, the responsible node ensures a quorum of replicas

confirms success. Cassandra writes data sequentially to disk to boost throughput. Reads are typically

routed to the closest replica, though this can be customized. TCP is used for replication and request

routing, while UDP handles other messages. Data is stored in blocks of up to 128 keys, enabling fast

searches. If the key is in memory, it is returned without disk I/O. Cassandra meets the needs of a highly

available key-value store and supports key mutation (updating keys with different values).

B. HBase DB

HBase is a distributed, scalable big data store built on top of Hadoop, offering strong consistency. Its

deployment includes the HMaster (manages metadata and table sharding), Region Servers (store data in

memory and sync to HDFS), and Zookeeper (manages region servers and clusters).

HMaster maintains a META table, helping clients locate the correct region server for a specific key.

Clients query the table for the server name, region identifier, and start key, allowing them to determine

the key range and contact the appropriate server. When a region server syncs data to HDFS, it follows

Hadoop's default replication factor of 3.

When a region server's table size reaches a threshold, keys are sharded to servers with lighter loads,

with Zookeeper handling load balancing. Each region server also acts as a Zookeeper peer, forming a

quorum. Each region server keeps a write-ahead log (WAL) file, which is replicated to slave clusters.

HBase processes every request as a MapReduce job, handled by the region servers for the relevant

data chunk. It offers two caching techniques: LruBlockCache (default, using heaps) and Bucket Cache

(since HBase 0.98.6). Bucket Cache reduces fragmentation, while LruBlockCache provides faster

response times. While HBase requires deployment expertise, it offers a robust distributed solution as a

scalable key-value store.

V. FEATURE COMPARISON

A. Replication Features

The table below sheds light on the important factors that determine an efficient replication policy.

TABLE II. PROPERTY SURVEY

KV Store Granularity Node Discovery

Protocol

Consistency

Riak Per bucket (set of

keys)

Gossip Protocol Eventual

Redis Master-Slave

Replication (Node to

Node replication)

Gossip Protocol Eventual, Strong

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 6

MongoDB Master-Slave (Node to

Node replication)

Proprietary

Replication Protocol

Strong

HBase Per table replication Uses Zookeeper Eventual, Strong

Cassandra Per table replication Gossip Protocol Eventual

Berkeley DB Node to Node

replication

Two-phase voting

protocol over TCP/IP

Strong

Memcached Per keyspace (set of

tables)

Servers do not

communicate, client

does.

Client Specific

TABLE III. PROPERTY SURVEY EXTENDED

KV Store Replication Policies Read

Concern

Write Concern Cluster

Manager

Riak Master-less multi-site

replication

Yes Yes In-Built

Redis Master-Slave No. No In-Built

MongoDB Range based, Hash based

and Location-aware sharding

Yes Yes In-Built

HBase Cyclic (master to master),

master to slave.

Yes Yes Zookeeper

Cassandra Rack Aware, Rack Unaware

and Datacenter Aware

Yes Yes In built

Berkeley DB Master-Replica Yes Yes None

Memcached LRU Caching policy No No None

While Redis, MongoDB and Berkeley DB support node to node replication of complete data set, Riak,

HBase, Cassandra and Memcached give one further abstraction to find tune the replicas per table

(keyspace). Most of the key value stores Gossip protocol as their control state protocol and offer

eventual consistency. MongodBN and Cassandra support different replication policies giving clients a

flexibility to fine tune their deployment. Redis, MongoDB, HBase, Cassandra and Berkeley DB offer the

capability to replicate/read data to/from a quorum of N nodes (out of the replication factor R) and

consider the request a success. This certainly improves the overall response time from the client’s

perspective.

B. Memory Features

Caching is crucial in key-value stores as it improves hit ratios and reduces I/O overhead. While most

key-value stores use the Least Recently Used (LRU) policy, some adopt write-through or copy-on-write

strategies. Batching requests further enhances memory performance by fetching multiple records in a

single I/O operation. Built-in pipelining also boosts overall performance, increasing the number of

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 7

requests handled per second. Though sharding is a key feature of parallel file systems, some key-value

stores also implement this approach.

TABLE IV. MEMORY SURVEY

KV Store Caching Request

Batching

Pipelining Publisher

/

Subscrib

er Model

Sharding Policy

Riak Copy on

write

Yes No built-in

pipelining

No such

feature

No sharding

Redis Write

through

Yes Yes (Mass

Insertion)

Yes Yes

MongoDB No caching Yes Yes (Aggregation

Pipelining)

Yes Yes. Data is

sharded to

64MB chunks.

HBase Bucket

Cache and

LruBlock

Cache

Yes Yes (Pipelined

Scanning)

By

integratio

n with

Kafka

Yes. Per chunk

size is 64MB.

Cassandra Built in key

and row

caches

Yes No built-in

pipelining

By

integratio

n with

Zookeepe

r

No

Berkeley DB LRU Yes No built-in

pipelining

No such

feature

No

Memcached LRU Batched

Get but no

Batched Set

Clients can build

pipelining support.

No such

feature

No

C. Key Operations

Next, we explore the operations with respect to key operations phenomena’s like indexing, range

keys, auto key expiry (to garbage collect), key mutation operations, link walking or in other words

cursors to iterate over a contiguous set of keys.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 8

TABLE V. KEY OPERATIONS SURVEY

KV Store Range

Queries

Auto Key

Expiry

Key

Mutations

Link

Walking

Or Cursors

Secondary

Indexing

Riak Yes Yes No Yes Yes

Redis Yes Yes No Yes Yes

MongoDB Yes Yes No Yes Yes

HBase Yes Yes Yes Yes(Scanners) Yes

Cassandra Yes Yes Yes Yes(Auto

paging)

Yes. (Not

recommended

though)

Berkeley DB Yes Yes Yes Yes Yes

Memcached Yes Yes No No No

VI. EVALUATION

This paper evaluates the key value stores on a cluster of 20 nodes with 8 cores each with a RAM size

of . For all above mentioned key value stores, we use 4 nodes as servers and range the number of clients

from 16 to 128 to stress the overall system. We measure performance across 4 verticals by scaling

clients, scaling the data from small requests of large-to-large number of requests of large sizes. We vary

the sizes from 2KB to 2GB per client. We first calculate the initialization time for every key value store

to compare the bootstrapping scenarios for each of them, then we perform writes followed by reads. We

use MPI infrastructure to scale the clients from 16 to 128 such that each client process is allocated a

dedicated core to complete allocation.

A. Client Connection

The time taken to establish a connection to a key-value store is an interesting scenario, as we want to

compare how quickly clients can connect and begin performing operations. The following chart shows

the average connection time in milliseconds along the X-axis. Notably, Redis, Riak, and Cassandra took

significantly longer than other key-value stores. Cassandra shows a spike, as each time a client connects,

its information is sent to the seed provider (or master), requiring additional message exchanges before

the client receives a connection handle.

Redis experiences delays due to several special checks when a client connects: it changes the

client socket to non-blocking, modifies the TCP connection to set the TCP_NODELAY flag, and creates

a libevent handle for each connection/socket. These steps contribute to the spike in Redis' connection

time.

Riak, being a non-location-aware key-value store, randomly selects a node for each client request.

Additionally, Riak communicates with clients over HTTP, which introduces extra overhead, especially

considering its design for web applications.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 9

B. Scaling Clients (Writing Large Requests)

Following figures represent a scenario where each client is writing 1 key with 2GB and 2 keys with

2GB values each. This experiment is done in order to stress the file system in terms of memory and then

measure performance.

Note: HBase, Cassandra doesn’t support values of this size and hence is not shown in the figures.

Fig. 1. Time to write 2GB value per key

Fig. 2. Time to write 2 keys of 1GB value per key

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 10

BerkleyDB being a library and real close to the native OS calls, undoubtedly is expected to

outperform the other stores as it doesn’t involve any fancy overheads apart from replication. Riak on the

other hand is not able to scale well in such scenarios. One probable solution to this would be sharding

the data to multiple nodes.

C. Scaling Clients (Reading Large Requests)

Fig. 3. Time to read 2GB value per key

Fig. 4. Time to read 2 keys of 2 GB value each per client

In the above tests, MongoDB struggled to scale beyond 2GB workloads but performed well with 1GB

requests. Riak, being a library closely integrated with native OS calls, is expected to outperform other

stores due to its minimal overhead, aside from replication. However, Riak did not scale well in these

scenarios. One potential solution to improve its scalability would be to shard the data across multiple

nodes.

D. Scaling Clients (Writing large number of small requests)

We performed three experiments as part of this scenario:

• Each client writing 1024 requests of 1KB values each.

• Each client writing 2048 requests of 256 bytes each.

• Each client writing 20480 requests of 128 bytes each.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 11

The results show that while other key values stores produce competitive timings, Riak is slower by

an order of magnitude. Overall, we can conclude that the architecture of riak seems to have an overall

overhead when compared with other key value stores.

Fig. 5. Scale testing

Fig. 6. Scale testing of values

Fig. 7. Scale testing of 10X

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 12

E. Scaling Clients (Reading large number of small requests)

Like writing, we repeat the following experiments for reading:

• Each client reading 2048 requests of 256 bytes each.

• Each client reading 20480 requests of 128 bytes each.

While the numbers for Riak were in order of magnitude worse than the order stores, while reading

MongoDB took a lot of time. This primarily is because of the way a search is performed on the

documents. There is a lot of metadata associated with each small document which wastes time and effort

of this document-based store. Note these results were taken with indexing enabled, with indexing

disabled MongoDB shows even worse performance.

Fig. 8. Scale testing constrained at bytes

Fig. 9. Scale testing at 128 bytes

VII. CONCLUSION

Key-value stores are becoming increasingly important for the workloads generated by modern

applications. Choosing the right store based on data access patterns is crucial. After reviewing the

characteristics of various key-value stores, we can identify key features that form the foundation of a

highly available and scalable distributed key-value store. These features include sharding, load balancing,

key-level and column-level indexing, the use of bloom filters to check if a node contains a key, support

for batch requests, eventual consistency, and intelligent load balancing. Allowing clients to customize

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25051555 Volume 6, Issue 5, May 2025 13

the infrastructure based on their needs (such as in the cases of BerkeleyDB and Memcached) can

simplify the system and reduce overhead.

Reliability and scalability are essential, as increased data and operational traffic lead to more frequent

failures. Over time, key-value stores have evolved to handle these challenges and offer distributed,

replicated infrastructures that can withstand faults. Another notable feature is flexibility—clients avoid

delays caused by POSIX I/O, and applications can run the same code across heterogeneous systems.

With the rise of REST-based frameworks, many key-value stores are adopting standardized client

interfaces. The next wave of key-value stores will focus on providing user-friendly interfaces (e.g.,

stores that run web servers for browser-based visualization) and offering solutions tailored to the specific

needs of different application types.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra - A Decentralized Structured Storage System,” Facebook

Inc., 2009.

[2] K. Seguin, The Little Redis Book, 2011.

[3] “Memcached,” [Online]. Available: https://memcached.org/. [Accessed: May 5, 2025].

[4] “Redis,” [Online]. Available: https://redis.io/. [Accessed: May 5, 2025].

[5] “Riak,” Basho Technologies. [Online]. Available: http://basho.com/. [Accessed: May 5, 2025].

[6] Apache HBase Reference Guide, Version 2.0.0, The Apache Software Foundation, 2018.

[7] MongoDB Architecture Guide, MongoDB Inc., Version 3.2, 2016.

[8] M. Seeger, “Key-Value Stores: A Practical Overview,” Computer Science and Media, 2011.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload Analysis of a Large-

Scale Key-Value Store,” in Proc. ACM SIGMETRICS, 2012, pp. 53–64.

[10] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,” in Proc. 21st ACM

SOSP, 2007, pp. 205–220.

[11] T. Cowsalya and S. R. Mugunthan, “Hadoop Architecture and Fault Tolerance based Hadoop

Clusters in Geographically Distributed Data Center,” International Journal of Computer

Applications, vol. 89, no. 3, pp. 1–6, Mar. 2014.

[12] N. Yuhanna, “The Forrester Wave™: NoSQL Key-Value Databases, Q3 2014,” Forrester

Research, Sep. 2014.

[13] D. Cronin, “A Survey of Modern Key-Value Stores,” Stanford University, Technical Report, 2013.

[14] Berkeley DB Tutorial and Reference Guide, Version 4.1.24, Oracle Corporation, 2003.

https://www.ijlrp.com/
https://memcached.org/
https://redis.io/
http://basho.com/

