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Abstract 

Key value stores encapsulate data, metadata, a globally unique identifier and data attributes into a 

single immutable entity termed an object. In an object store, objects are organized in a flat 

address space i.e every object exists at the same level in a large scalable pool of storage. Key value 

stores follow location independent addressing and are accessed via the unique identifier. Key value 

stores are designed primarily to manipulate data sets that does not have a predefined data model 

or in other words is unstructured. The key operations for an object store include retrieval (get), 

store(put) and deletion(delete). In this survey, we aim to evaluate different classes of key values 

stores in terms of feature set, design choices, architectures, performance and their adaptability in 

the current market. 

 

Keywords: Key Value Stores, Document Stores, Memory, Replication, Scalability, Caching, Read 

Vs Write Performance 

I. INTRODUCTION 

Key value stores can be categorized into following categories based on the design approach, the object 

format, replication policy, caching mechanisms, consistency aspects, discovery protocols etc. General 

Key Value stores based on the classic key value store design approach of storing data in the form of 

object value stores. Some examples include Redis, Memcached. Column Based stores often store 

column entries as a continuous entry in the disk thus making the access faster. In graph based stores, 

data is stored in the form of nodes and edges where nodes are instances of the objects and the 

relationship among objects are represented using edges. HBase and Cassandra are based on this design. 

Document based stores embed data in the form key value pairs and the associate metadata in the form of 

documents. Some of the famous examples are MongoDB, Riak, Terrastore. There are other classes of 

specialized key value stores designed to suit the needs of certain applications. Some examples are Pregel, 

VertexDB etc.  

 

There are various implementations of each of the classes mentioned above and the first step for this 

research was to select the key value stores that should be studied in order to represent the rationale 

behind these classes. Figure 1 represents the key value stores we explored. Next we selected the 

representatives on the basis of popularity, adaptability, ease of use, features, scalability, flexibility and 

reliability factors for each class of the key value stores. In the next few sections, we explore details of 

the selected representative stores.  
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TABLE I.  RANKING BASED ON PROPERTIES 

Category 
Popularity Performance 

Researched in this 

paper  

Regular Key 

Value Stores 

Redis 

Memcached 

BerkleyDB 

TokyoCabinet 

Voldemort 

Dynamo 

Redis 

Tokyo Cabinet 

BerkleyDB 

Memcached 

Voldemort 

Dynamo 

BerkleyDB 

Memcached 

Redis 

Document 

Based Key 

Value Stores 

CouchDB 

Riak 

OrientDB 

MongoDB 

Azure’s 

Document DB 

Apache 

JackRabbit 

Terrastore 

CouchDB 

Riak 

OrientDB 

MongoDB 

Azure’s Document 

DB 

Apache JackRabbit 

Terrastore 

Riak 

MongoDB 

Column Based 

Key Value 

Stores 

Cassandra 

HBase 

HyperTable 

BigTable 

Cassandra 

HBase 

HyperTable 

BigTable 

Cassandra 

HBase 

 

II. DOCUMENT BASED STORES 

A. Riak 

Riak has adopted its architecture from Amazon’s Dynamo with style variations. In general, 

distributed key value stores follow architecture in lines with master and slave paradigm, Riak takes its 

way off from this approach by treating all the nodes in the cluster equally responsible for the tasks 

assigned to them. So from a user’s perspective it can contact any node and send a get, put or an update 

request.  

Riak uses consistent hashing to distribute data across cluster nodes, reducing data movement during 

node failures and enhancing resilience. The 2¹⁶⁰-bit keyspace is split into partitions, grouped into virtual 

nodes, which are assigned to physical nodes. This setup allows virtual nodes to be redistributed during 

failures without relying on the physical node layout. 

 

Riak organizes data in buckets, with each bucket holding keys. A binary hash is calculated for each 

bucket/key pair and placed on an ordered ring, divided into partitions. Each virtual node controls one or 

more partitions. For data versioning and causal consistency, Riak uses vector clocks to maintain multiple 

object versions, which is useful in applications like malware analysis. 

Cluster topology changes are shared through the gossip protocol, but in edge cases, it may overwhelm 

network resources due to excessive messages. Riak follows an “always writable” design, ensuring 
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availability even during partitioned or degraded states. It uses a read-repair mechanism to synchronize 

missing data and performs active anti-entropy tasks to fix data inconsistencies. However, Riak lacks a 

built-in load balancer, requiring third-party solutions. The gossip protocol, while efficient in typical 

conditions, may become a bottleneck in complex or irregular network environments. 

B. MongoDB 

MongoDB is a scalable, document-based key-value store with replication support. It consists of 

configuration servers that manage metadata and shard servers that store data. Documents are divided 

into chunks and replicated across shards. MongoDB supports replication through replica sets, where 

documents are replicated across nodes. 

 

The configuration servers store metadata such as chunk lists and shard ranges. MongoDB offers multiple 

sharding policies: range-based, hash-based, and location-aware, making it highly adaptable. By default, 

documents with similar shard key values are co-located on the same shard to enhance locality of 

reference. 

 

In MongoDB, writes are directed to the primary node, while reads are served by replicas, ensuring 

high read availability. It also processes writes in batches to improve concurrency and optimize disk I/O. 

Clients may see write results before they are fully propagated, as a write is considered successful once a 

quorum of nodes processes it. MongoDB assigns priorities to nodes, with higher-priority nodes more 

likely to win the election when the primary fails. 

III. REGULAR KEY VALUE STORES 

A. Redis 

Redis separates read and write services: writes are handled by masters, and reads by clients, in a 

"split-brain" model where subsystems are unaware of each other. The infrastructure ensures consistency 

between masters and slaves, managed by the internal cluster manager, redis-trib. Redis uses hash slots 

for sharding, where each slot is calculated using CRC16 of the key modulo 16384. A hash slot can 

contain up to 2160 keys. When a new node is added, slots are reassigned, and clients accessing old 

nodes will receive a "MOVED" error, directing them to the new location. 

 

Redis is single-threaded, so large requests can delay other client interactions. It uses RESP (Redis 

Serialization Protocol) for communication and a gossip protocol for node interactions. Redis' 

performance benefits from pipelining and a Pub/Sub system, allowing clients to receive messages once 

processing is complete. 

B. Memcached 

Memcached is an in-memory distributed cache designed to speed up web applications by caching 

frequently accessed data. It uses a doubly linked list and hashmap for efficient key management, sorted 

by access time with an LRU caching policy for eviction. Memory is organized into 1MB pages, 

subdivided into chunks based on slab classes. On write, it finds the appropriate slab for the chunk, and 

on read, it returns data from memory or fetches it from the database. 
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However, Memcached allocates a 56-byte header for each key-value object, even for size 0 values, 

introducing overhead. 

C. Berkley DB 

Berkeley DB differs from traditional KV stores by providing a library that integrates with 

applications, rather than relying on a separate server application. It offers efficient in-memory key-value 

storage, using hash tables or B+trees as the primary data structure. B+trees are used for indexing, 

enabling fast lookups and efficient indexing. 

Berkeley DB provides low-level APIs for replication, starting with all nodes and designating one as 

the replication manager. Replication is system-wide, not entry-specific. It offers three replication 

policies: None (no sync), All (sync to all), and Simple_Majority (sync to a subset of nodes). Like 

MongoDB, it follows a write-to-master, read-from-replica model. It also supports partitioning data 

across cluster nodes, and when reading, it combines data from multiple parts using indexes to optimize 

searches, sending the result to the client. Sync parameters, including the option to delay syncing, can be 

adjusted. For example, if a specific master is expected to handle both reads and writes, the sync to 

replicas can be delayed. 

While Berkeley DB simplifies programming, it may not appeal to developers seeking fully featured 

solutions. It is better suited for those building custom key-value store systems, especially those familiar 

with the complexities of highly available infrastructure. 

Berkeley DB deviates from the paradigm followed by regular KV Stores by providing a library to 

link with the applications rather than a separate server application. Berkeley DB is a library which 

provides efficient in memory key value stores, where keys can be stores in hash tables or as B+trees. 

BerkeleyDB uses B+trees as their primary data structure and builds indexes around the tree nodes for 

efficient lookup. Also, B+ tress offer ease of indexing.  

IV. COLUMN BASED STORES 

A. Cassandra 

Cassandra was developed to meet the need for a fast database for Facebook's Inbox Search. Known 

for its scalability, it partitions data across cluster nodes using consistent hashing. Like DynamoDB, the 

nodes are mapped to virtual spaces in a ring, with each space responsible for a set of keys. Load 

balancing is achieved by moving lightly loaded nodes along the ring to relieve heavily loaded ones. 

Each node coordinates the keys in its virtual space and replicates data to N-1 other nodes (N being the 

replication factor). Cassandra offers replication policies like "Rack Aware," "Rack Unaware," and 

"Datacenter Aware" for fine-tuning performance. It uses Zookeeper to manage the cluster, similar to 

HBase. 

Cassandra's performance is driven by indexing, utilizing Bloom filters to check for keys. It stores 

keys in-memory up to a threshold, then writes to disk in a single operation, optimizing disk I/O. While 
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this experiment focuses on key-value pairs, it's important to note that Cassandra also maintains column 

indexes for faster response times. 

Cassandra uses the gossip protocol to propagate control states across nodes. During bootstrapping, 

nodes sync data from pre-configured "seeds," which can be set in Zookeeper's config. Read/write 

requests can be directed to any node. For writes, the responsible node ensures a quorum of replicas 

confirms success. Cassandra writes data sequentially to disk to boost throughput. Reads are typically 

routed to the closest replica, though this can be customized. TCP is used for replication and request 

routing, while UDP handles other messages. Data is stored in blocks of up to 128 keys, enabling fast 

searches. If the key is in memory, it is returned without disk I/O. Cassandra meets the needs of a highly 

available key-value store and supports key mutation (updating keys with different values). 

B. HBase DB 

HBase is a distributed, scalable big data store built on top of Hadoop, offering strong consistency. Its 

deployment includes the HMaster (manages metadata and table sharding), Region Servers (store data in 

memory and sync to HDFS), and Zookeeper (manages region servers and clusters). 

 

HMaster maintains a META table, helping clients locate the correct region server for a specific key. 

Clients query the table for the server name, region identifier, and start key, allowing them to determine 

the key range and contact the appropriate server. When a region server syncs data to HDFS, it follows 

Hadoop's default replication factor of 3. 

 

When a region server's table size reaches a threshold, keys are sharded to servers with lighter loads, 

with Zookeeper handling load balancing. Each region server also acts as a Zookeeper peer, forming a 

quorum. Each region server keeps a write-ahead log (WAL) file, which is replicated to slave clusters. 

HBase processes every request as a MapReduce job, handled by the region servers for the relevant 

data chunk. It offers two caching techniques: LruBlockCache (default, using heaps) and Bucket Cache 

(since HBase 0.98.6). Bucket Cache reduces fragmentation, while LruBlockCache provides faster 

response times. While HBase requires deployment expertise, it offers a robust distributed solution as a 

scalable key-value store. 

V. FEATURE COMPARISON 

A. Replication Features 

The table below sheds light on the important factors that determine an efficient replication policy. 

TABLE II.  PROPERTY SURVEY 

 

KV Store Granularity Node Discovery 

Protocol 

Consistency 

Riak Per bucket (set of 

keys) 

Gossip Protocol Eventual 

Redis Master-Slave 

Replication (Node to 

Node replication) 

Gossip Protocol Eventual, Strong 
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MongoDB Master-Slave (Node to 

Node replication) 

Proprietary 

Replication Protocol 

Strong 

HBase Per table replication Uses Zookeeper Eventual, Strong 

Cassandra Per table replication Gossip Protocol Eventual 

Berkeley DB Node to Node 

replication 

Two-phase voting 

protocol over TCP/IP 

Strong 

Memcached Per keyspace (set of 

tables) 

Servers do not 

communicate, client 

does. 

Client Specific 

 

TABLE III.  PROPERTY SURVEY EXTENDED 

 

KV Store Replication Policies Read 

Concern 

Write Concern Cluster 

Manager 

Riak Master-less multi-site 

replication 

Yes Yes In-Built 

Redis Master-Slave No. No In-Built 

MongoDB Range based, Hash based 

and Location-aware sharding 

Yes Yes In-Built 

HBase Cyclic (master to master), 

master to slave. 

Yes Yes Zookeeper 

Cassandra Rack Aware, Rack Unaware 

and Datacenter Aware 

Yes Yes In built 

Berkeley DB Master-Replica Yes Yes None 

Memcached LRU Caching policy No No None 

 

While Redis, MongoDB and Berkeley DB support node to node replication of complete data set, Riak, 

HBase, Cassandra and Memcached give one further abstraction to find tune the replicas per table 

(keyspace). Most of the key value stores Gossip protocol as their control state protocol and offer 

eventual consistency. MongodBN and Cassandra support different replication policies giving clients a 

flexibility to fine tune their deployment. Redis, MongoDB, HBase, Cassandra and Berkeley DB offer the 

capability to replicate/read data to/from a quorum of N nodes (out of the replication factor R) and 

consider the request a success. This certainly improves the overall response time from the client’s 

perspective.  

B. Memory Features 

Caching is crucial in key-value stores as it improves hit ratios and reduces I/O overhead. While most 

key-value stores use the Least Recently Used (LRU) policy, some adopt write-through or copy-on-write 

strategies. Batching requests further enhances memory performance by fetching multiple records in a 

single I/O operation. Built-in pipelining also boosts overall performance, increasing the number of 
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requests handled per second. Though sharding is a key feature of parallel file systems, some key-value 

stores also implement this approach.  

TABLE IV.  MEMORY SURVEY 

KV Store Caching Request 

Batching 

Pipelining Publisher

/ 

Subscrib

er Model 

Sharding Policy 

Riak Copy on 

write 

Yes No built-in 

pipelining 

No such 

feature 

No sharding 

Redis Write 

through 

Yes Yes (Mass 

Insertion) 

Yes Yes 

MongoDB No caching Yes Yes (Aggregation 

Pipelining) 

Yes Yes. Data is 

sharded to 

64MB chunks. 

HBase Bucket 

Cache and 

LruBlock 

Cache 

Yes Yes (Pipelined 

Scanning) 

By 

integratio

n with 

Kafka 

Yes. Per chunk 

size is 64MB. 

Cassandra Built in key 

and row 

caches 

Yes No built-in 

pipelining 

By 

integratio

n with 

Zookeepe

r 

No 

Berkeley DB LRU Yes No built-in 

pipelining 

No such 

feature 

No 

Memcached LRU Batched 

Get but no 

Batched Set 

Clients can build 

pipelining support. 

No such 

feature 

No 

 

C. Key Operations 

Next, we explore the operations with respect to key operations phenomena’s like indexing, range 

keys, auto key expiry (to garbage collect), key mutation operations, link walking or in other words 

cursors to iterate over a contiguous set of keys. 
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TABLE V.  KEY OPERATIONS SURVEY 

 

KV Store Range 

Queries 

Auto Key 

Expiry 

Key 

Mutations 

Link 

Walking 

Or Cursors 

Secondary 

Indexing 

Riak Yes Yes No Yes Yes 

Redis Yes Yes No Yes Yes 

MongoDB Yes Yes No Yes Yes 

HBase Yes Yes Yes Yes(Scanners) Yes 

Cassandra Yes Yes Yes Yes(Auto 

paging) 

Yes. (Not 

recommended 

though) 

Berkeley DB Yes Yes Yes Yes Yes 

Memcached Yes Yes No No No 

 

VI. EVALUATION 

This paper evaluates the key value stores on a cluster of 20 nodes with 8 cores each with a RAM size 

of . For all above mentioned key value stores, we use 4 nodes as servers and range the number of clients 

from 16 to 128 to stress the overall system. We measure performance across 4 verticals by scaling 

clients, scaling the data from small requests of large-to-large number of requests of large sizes. We vary 

the sizes from 2KB to 2GB per client. We first calculate the initialization time for every key value store 

to compare the bootstrapping scenarios for each of them, then we perform writes followed by reads. We 

use MPI infrastructure to scale the clients from 16 to 128 such that each client process is allocated a 

dedicated core to complete allocation. 

 

A. Client Connection  

The time taken to establish a connection to a key-value store is an interesting scenario, as we want to 

compare how quickly clients can connect and begin performing operations. The following chart shows 

the average connection time in milliseconds along the X-axis. Notably, Redis, Riak, and Cassandra took 

significantly longer than other key-value stores. Cassandra shows a spike, as each time a client connects, 

its information is sent to the seed provider (or master), requiring additional message exchanges before 

the client receives a connection handle. 

Redis experiences delays due to several special checks when a client connects: it changes the 

client socket to non-blocking, modifies the TCP connection to set the TCP_NODELAY flag, and creates 

a libevent handle for each connection/socket. These steps contribute to the spike in Redis' connection 

time. 

Riak, being a non-location-aware key-value store, randomly selects a node for each client request. 

Additionally, Riak communicates with clients over HTTP, which introduces extra overhead, especially 

considering its design for web applications. 
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B. Scaling Clients (Writing Large Requests) 

 

Following figures represent a scenario where each client is writing 1 key with 2GB and 2 keys with 

2GB values each. This experiment is done in order to stress the file system in terms of memory and then 

measure performance.  

 

Note: HBase, Cassandra doesn’t support values of this size and hence is not shown in the figures.  

  

 

Fig. 1. Time to write 2GB value per key 

 

Fig. 2. Time to write 2 keys of 1GB value per key 
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BerkleyDB being a library and real close to the native OS calls, undoubtedly is expected to 

outperform the other stores as it doesn’t involve any fancy overheads apart from replication. Riak on the 

other hand is not able to scale well in such scenarios. One probable solution to this would be sharding 

the data to multiple nodes.  

 

C. Scaling Clients (Reading Large Requests) 

 

 

Fig. 3. Time to read 2GB value per key 

 

Fig. 4. Time to read 2 keys of 2 GB value each per client 

In the above tests, MongoDB struggled to scale beyond 2GB workloads but performed well with 1GB 

requests. Riak, being a library closely integrated with native OS calls, is expected to outperform other 

stores due to its minimal overhead, aside from replication. However, Riak did not scale well in these 

scenarios. One potential solution to improve its scalability would be to shard the data across multiple 

nodes. 

 

D. Scaling Clients (Writing large number of small requests) 

We performed three experiments as part of this scenario: 

• Each client writing 1024 requests of 1KB values each. 

• Each client writing 2048 requests of 256 bytes each.  

• Each client writing 20480 requests of 128 bytes each.  
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The results show that while other key values stores produce competitive timings, Riak is slower by 

an order of magnitude. Overall, we can conclude that the architecture of riak seems to have an overall 

overhead when compared with other key value stores.  

 

Fig. 5. Scale testing 

 

Fig. 6. Scale testing of values 

 

Fig. 7. Scale testing of 10X 
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E. Scaling Clients (Reading large number of small requests) 

Like writing, we repeat the following experiments for reading:  

• Each client reading 2048 requests of 256 bytes each.  

• Each client reading 20480 requests of 128 bytes each.  

While the numbers for Riak were in order of magnitude worse than the order stores, while reading 

MongoDB took a lot of time. This primarily is because of the way a search is performed on the 

documents. There is a lot of metadata associated with each small document which wastes time and effort 

of this document-based store. Note these results were taken with indexing enabled, with indexing 

disabled MongoDB shows even worse performance.  

 

 

Fig. 8. Scale testing constrained at bytes 

 

Fig. 9. Scale testing at 128 bytes 

VII. CONCLUSION 

 

Key-value stores are becoming increasingly important for the workloads generated by modern 

applications. Choosing the right store based on data access patterns is crucial. After reviewing the 

characteristics of various key-value stores, we can identify key features that form the foundation of a 

highly available and scalable distributed key-value store. These features include sharding, load balancing, 

key-level and column-level indexing, the use of bloom filters to check if a node contains a key, support 

for batch requests, eventual consistency, and intelligent load balancing. Allowing clients to customize 
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the infrastructure based on their needs (such as in the cases of BerkeleyDB and Memcached) can 

simplify the system and reduce overhead. 

 

Reliability and scalability are essential, as increased data and operational traffic lead to more frequent 

failures. Over time, key-value stores have evolved to handle these challenges and offer distributed, 

replicated infrastructures that can withstand faults. Another notable feature is flexibility—clients avoid 

delays caused by POSIX I/O, and applications can run the same code across heterogeneous systems. 

With the rise of REST-based frameworks, many key-value stores are adopting standardized client 

interfaces. The next wave of key-value stores will focus on providing user-friendly interfaces (e.g., 

stores that run web servers for browser-based visualization) and offering solutions tailored to the specific 

needs of different application types. 
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