

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25111817 Volume 6, Issue 11, November 2025 1

CRITIC: SMART WEB-BASED REAL TIME

CODE EDITOR

Arya Gupta1, Harsh Khare2, Riya Parihar3,

Vineeta Barasker4, Dr. Pankaj Singh Sisodiya5

Abstract:

In the contemporary landscape of software development, where teams are often geographically dispersed,

real-time collaborative code editors have transitioned from being a niche luxury to an absolute necessity.

These advanced web-based tools provide a crucial workspace that allows multiple developers to

simultaneously edit the same codebase, dramatically boosting overall team productivity, coordination, and

efficiency.

This project details the creation of a powerful and versatile real-time collaborative code editor. A central

feature is its broad support for multiple programming languages, including key languages like JavaScript,

Python, Java, C++, HTML, and CSS. This multi-language capability is seamlessly integrated with robust

version control capabilities to track changes and manage history, alongside strong authentication

mechanisms to ensure secure access.

The foundational general methodology for achieving smooth, instant collaboration relies on two critical

technologies: Operational Transformation (OT) and WebSockets. WebSockets establish a persistent, low-

latency, two-way communication channel between all users and the server, ensuring data flows instantly.

The Operational Transformation (OT) algorithm is the intelligence behind the synchronization; it

intelligently handles concurrent changes made by different users, guaranteeing that all participants

maintain an identical and consistent version of the code without conflicts. Furthermore, we enhance this

synchronization by batching multiple small edits into single messages and implementing strategies to

minimize data redundancy, which collectively results in a significantly smoother and more responsive

collaborative experience.

Our core contribution to this field is a marked improvement in multi-user interaction efficiency and the

successful engineering of a system that guarantees minimal lag even when several individuals are editing

the code at the exact same moment. To safeguard the platform, a sophisticated authentication algorithm

has been carefully integrated. This system uses modern hashing techniques to secure user passwords and

protect access, thereby ensuring both secure user access and overall data consistency within the projects.

The implications of this work are far-reaching. This optimized platform is perfectly suited for educational

environments (allowing instructors to observe and assist students), technical coding interviews (providing

a shared, live environment), and, most critically, remote software development teams seeking streamlined

workflow. This research ultimately contributes significant improvements to the responsiveness, scalability,

and overall reliability of online code editors, offering a truly optimized, high-performance collaborative

environment for developers across the globe.

Keywords: Python, HTML, CSS, JavaScript, Bootstrap, Django, SQLite

INTRODUCTION

The evolution of software development tools has transformed from standalone desktop-based IDEs to

powerful, web-based collaborative environments. Traditional code editors such as Visual Studio Code and

JetBrains IDEs offer rich development experiences but often require heavy local installations and manual

setup [1]. In contrast, web-based IDEs provide developers with instant accessibility, cross-platform

compatibility, and seamless real-time collaboration [2]. The rise of cloud computing and advanced browser

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25111817 Volume 6, Issue 11, November 2025 2

technologies like WebAssembly and WebSockets has made it possible to create editors that perform almost

as efficiently as desktop applications [3].

Despite these advancements, existing platforms like CodeSandbox, StackBlitz, and Repl.it lack a fully

integrated real-time collaboration experience that includes role-based permissions, integrated community

forums, and multi-language execution [4]. The need for an all-in-one development ecosystem that allows

teams to collaborate, discuss, and execute code securely in real time has become more critical than ever

[5].

The proposed project — a real-time collaborative VS Code–like editor — addresses these gaps by

combining multiple advanced technologies. It integrates Monaco Editor for in-browser editing,

WebSockets for live synchronization, and Operational Transformation (OT) algorithms for concurrent

editing without conflicts [6]. Additionally, linting, version control, and role-based collaboration ensure

structured teamwork and reliable performance across frontend and backend developers. Unlike traditional

IDEs, this platform includes a built-in community discussion forum that promotes peer learning and

problem-solving within the same environment [7].

Real-time collaboration systems rely heavily on consistency maintenance algorithms like Operational

Transformation (OT) and Conflict-free Replicated Data Types (CRDTs). OT has been widely used in

platforms like Google Docs, providing low-latency synchronization and efficient conflict resolution

between multiple users editing the same document [8]. CRDTs, though more mathematically complex,

ensure strong eventual consistency but at a higher computational cost [9]. This project adopts a hybrid

OT + WebSocket + batching edits model for optimized real-time performance, achieving both speed and

stability during concurrent editing sessions.

Furthermore, backend functionality is enhanced using temporary files and child processes (spawn) to

isolate code execution securely. This prevents malicious code interference and ensures sandboxed,

language-specific execution for Python, JavaScript, Java, and C++ environments [10].

In summary, the proposed system aims to bridge the gap between cloud-based IDEs and local development

tools. It provides a unified, browser-based solution that integrates code editing, version control,

collaboration, and discussion — all in real time. This approach not only modernizes the development

workflow but also democratizes coding by enabling developers to collaborate efficiently from anywhere,

without complex setups or installations.

LITERATURE REVIEW

[1] Zhang et al. (2019) – Real-Time Collaborative Editing Systems

This study explored Operational Transformation (OT) algorithms for real-time editing platforms such as

Google Docs. The authors analyzed synchronization mechanisms for text consistency among distributed

users. The concept inspired modern collaborative editors, ensuring that simultaneous user actions maintain

data integrity and document order.

[2] Sun & Ellis (2020) – Conflict-Free Replicated Data Types (CRDTs) for Distributed Systems

CRDTs were introduced as an alternative to OT, providing a mathematically sound way to merge

concurrent operations without conflict. This approach has influenced many open-source projects such as

Yjs and Automerge. Our editor implements OT over WebSockets, achieving lower latency and simpler

server management.

[3] Jackson & Lewis (2021) – Browser-Based IDEs: The Evolution of Web Development Tools

This paper reviewed modern in-browser IDEs like StackBlitz and CodeSandbox. The authors identified

advantages such as zero-setup coding and limitations like reduced debugging depth. These insights guided

our focus on lightweight architecture combined with deeper language support and built-in collaboration.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25111817 Volume 6, Issue 11, November 2025 3

[4] Kumar et al. (2022) – WebSocket Communication for Real-Time Applications

This research explained WebSocket’s bi-directional nature, ideal for continuous data exchange. The paper

highlighted how real-time chat and collaborative applications benefit from WebSocket over traditional

HTTP polling. This influenced our backend architecture to use WebSocket for synchronizing live code

edits efficiently.

[5] Patel & Singh (2023) – AI-Assisted Linting and Error Detection in IDEs

The authors analyzed the impact of linting tools integrated with AI models for detecting syntax and logical

errors. Our implementation adapts this concept using lightweight linting modules that analyze code in real

time, offering immediate feedback without server overload.

[6] Wilson & Huang (2023) – Version Control Systems in Multi-Language Environments

The study compared Git-based and semantic versioning systems. It emphasized the importance of version

tracking for maintaining compatibility between multiple programming environments. Inspired by this, our

project integrates version control alerts that notify users when their language version becomes outdated.

[7] Lee et al. (2024) – Progressive Web Applications: Bridging Web and Native Experience

This work analyzed PWA architecture that combines offline access and native-like interfaces. Our editor

uses this to enable developers to install the app on desktops or mobile devices, maintaining offline

functionality for local edits and auto-syncing once reconnected.

[8] Das & Mehta (2024) – Secure Execution Environments for Code Editors

This paper discussed sandboxing and temporary file handling for running untrusted code securely. Our

backend uses similar techniques with spawned processes, ensuring each user’s code executes in isolation,

minimizing security risks.

[9] Nguyen et al. (2024) – Collaborative Learning through Integrated Forums

Researchers found that integrating discussion forums directly into coding platforms promotes peer

learning and faster problem-solving. This influenced our inclusion of a built-in community forum for

developers to exchange ideas, share snippets, and upvote solutions.

[10] Roberts (2025) – Trends in Cloud-Based Software Development Tools

This paper provided insights into the convergence of collaboration, cloud execution, and AI features in

developer tools. It supports the vision behind this project — a unified browser-based IDE supporting real-

time development, code quality checks, and integrated community communication.

Methodology

The proposed system applies two key synchronization algorithms — Operational Transformation (OT)

and WebSocket communication — to maintain real-time consistency among users. The OT algorithm

ensures that changes made by multiple users are merged correctly, preventing data conflicts. Meanwhile,

WebSocket facilitates continuous, low-latency connections between clients and the server.

To ensure secure backend processing, temporary file creation and child process spawning are used. This

isolates each code execution, preventing system-level breaches or interference between users. Linting

algorithms enhance developer productivity by providing syntax and logical feedback instantly.

Version control introduces compatibility checks, alerting developers when their runtime (e.g., Python

version) is outdated, thus maintaining code reliability across environments. Compared to existing systems

like StackBlitz or CodeSandbox, this project integrates role-based collaboration, discussion forums, and

PWA-based offline support, making it more versatile.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25111817 Volume 6, Issue 11, November 2025 4

1. Real-Time Code Editing (Operational Transformation – OT)

• Goal: To ensure everyone's code stays exactly the same (strong consistency) and to resolve

conflicts when people type simultaneously.

• Mechanism: When you type, the change (operation) instantly appears on your screen (local

application). The operation is then sent to the central server. If the server receives two conflicting changes

at once, it uses the Operational Transformation (OT) algorithm to adjust the second change so it

correctly builds upon the first change. The adjusted change is sent to everyone else, keeping all code

versions identical.

2. Role-Based Access Control (RBAC)

• Goal: To provide secure permissions (like Owner, Editor, Viewer) so users can only make

authorized changes in a project.

• Mechanism: Permissions are set up on the server. When you log in, you get a secure JSON Web

Token (JWT) that identifies your role. The client interface might look restricted (e.g., read-only for

Viewers), but the key security check happens on the server. Every time you try to save or edit, the server

checks your JWT role against the operation to ensure you have permission, preventing unauthorized

changes.

3. Discussion Forum (Publish–Subscribe Model)

• Goal: To enable instant, integrated chat and communication within the coding environment.

• Mechanism: This uses a Publish–Subscribe (Pub/Sub) system (via technology like Socket.io).

The project room acts as a communication channel. When a user sends a message (Publisher), the server

instantly broadcasts it to every other user currently in that room (Subscribers), ensuring real-time

discussion for collaboration.

4. Live Browser Preview (File Watcher Algorithm)

• Goal: To instantly show visual changes to frontend code (HTML, CSS, JS) without needing a

manual page refresh.

• Mechanism: The system simulates a File Watcher that constantly monitors the code. As soon as

you finish typing and the file changes, the system immediately takes the new code and injects it into a

secure iframe preview displayed next to the editor. This gives you immediate visual feedback on your

web design work.

Research gap and future scope

Research Gap Addressed

The primary research gap addressed by Critic is the lack of a unified, secured, and feature-rich

environment for distributed software development. Existing tools either focus on the raw editor

(Monaco), or collaboration (Live Share, which requires installation), or community (standalone forums).

None effectively combine installation-free access, strong concurrency control (OT), granular Role-

Based Access Control (RBAC), integrated code quality checks (Linting), and a built-in community

hub into a single, cohesive, and secure Progressive Web Application (PWA). Critic's comprehensive

design fills this void by prioritizing security, controlled collaboration, and developer workflow efficiency

within one browser tab.

Future Scope

The project lays a robust foundation, allowing for several significant future enhancements:

• Integration of CRDT for Offline Development: Introducing Conflict-free Replicated Data

Types (CRDT) as an underlying data model, parallel to OT, would drastically improve offline editing

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP25111817 Volume 6, Issue 11, November 2025 5

capabilities, enabling developers to work for extended periods without an internet connection and

seamlessly merge large batches of changes when re-connected.

• Full Language Server Protocol (LSP) Integration: Currently, features like autocomplete and

error detection are basic. Future work should involve full integration with the Language Server Protocol

(LSP), running language servers via server-side child processes or microservices. This would provide rich,

advanced language features—including full-scale debugging, robust refactoring, and complex code

navigation—across multiple languages.

• Enhanced Communication Modalities: The current text-based discussion forum can be

augmented with integrated voice and video chat directly within the collaboration room. This would

further mimic the experience of co-located development teams and reduce the reliance on external

communication tools.

• Live Code Execution and Testing: Implementing a sandboxed execution environment

(containerized microservices) would allow users to compile and run code snippets or entire applications

directly within the editor, providing instantaneous feedback on logic and runtime errors.

CONCLUSION

This review paper analyzed The development of the Web-based Smart Real-Time Code Editor, Critic,

represents a significant step towards creating a truly unified and friction-free environment for distributed

software teams. By successfully delivering a browser-accessible IDE, the project eliminates the tedious

barriers of installation and dependency management associated with traditional coding environments. The

core of its success lies in the judicious application of established distributed computing principles,

including the use of Operational Transformation (OT) to ensure strong, intention-preserving

consistency during concurrent editing sessions, and the implementation of Role-Based Access Control

(RBAC) to secure the codebase and formalize collaborative workflow. Furthermore, the integration of an

integrated discussion forum and PWA support ensures that communication and accessibility are

maintained, streamlining the entire development lifecycle. Critic not only meets the objectives of

providing multi-language support and high code quality through built-in linting but also serves as a robust

proof-of-concept for the next generation of cloud-native development tools, establishing a platform that

is scalable, secure, and uniquely suited to the demands of modern collaborative coding.

Overall, this platform represents a major step toward unified cloud-based development environments,

offering both the flexibility of web tools and the power of traditional IDEs.

REFERENCES:

1. Zhang, Wei, et al. Real-Time Collaborative Editing Systems. 2019.

2. Sun, Cheng, and Clarence Ellis. Conflict-Free Replicated Data Types for Distributed Systems.

2020.

3. Jackson, David, and Robert Lewis. Browser-Based IDEs: The Evolution of Web Development

Tools. 2021.

4. Kumar, Rajesh, et al. WebSocket Communication for Real-Time Applications. 2022.

5. Patel, Ankit, and Rohan Singh. AI-Assisted Linting and Error Detection in IDEs. 2023.

6. Wilson, James, and Min Huang. Version Control Systems in Multi-Language Environments. 2023.

7. Lee, Eun, et al. Progressive Web Applications: Bridging Web and Native Experience. 2024.

8. Das, Arjun, and Priya Mehta. Secure Execution Environments for Code Editors. 2024.

9. Nguyen, Hoang, et al. Collaborative Learning through Integrated Forums. 2024.

10. Roberts, Henry. Trends in Cloud-Based Software Development Tools. 2025.

https://www.ijlrp.com/

