

# “Role of Native Pollinators Versus Introduced Honeybee Species in Enhancing Crop Yield”

**Shaily Rani<sup>1</sup>, Dr. Ram Kumar<sup>2</sup>**

<sup>1</sup>Research Scholar, <sup>2</sup>Research Supervisor

## **Abstract:**

This study investigates the comparative role of native pollinators and introduced honeybee species (*Apis mellifera*) in enhancing crop yield across diversified farming systems. Conducted in mixed-crop agricultural regions, the research utilized a field-based comparative approach, observing pollinator visitation, pollen deposition, and resulting crop yields across farms dominated by native pollinators, *Apis mellifera*, and a combination of both. Key parameters such as fruit set percentage, seed count, and yield per plant were measured for tomato crops. Results indicated that native pollinators, including carpenter bees, stingless bees, and bumblebees, exhibited significantly higher per-visit pollen deposition and were more active under variable weather conditions compared to *Apis mellifera*. Mixed-pollinator farms achieved the highest yield metrics, suggesting that pollinator diversity enhances pollination efficiency and yield stability. Additionally, native-only farms demonstrated better resilience in cloudy weather, with lower declines in pollinator activity and crop output. These findings highlight the ecological and agronomic benefits of integrating native pollinator conservation into agricultural practices. Overreliance on managed honeybees alone may reduce ecosystem resilience and long-term productivity. Promoting a diverse pollinator community offers a more sustainable path toward food security and ecological stability.

**Keywords:** Native pollinators, *Apis mellifera*, crop yield, pollination efficiency, pollen deposition, biodiversity, sustainable agriculture, weather resilience, tomato pollination, ecosystem services.

## **1. INTRODUCTION**

Pollination is a critical ecological process that supports both natural ecosystems and agricultural production. Approximately 75% of the world's leading crops benefit from animal pollination, and this ecosystem service is essential for the yield, quality, and genetic diversity of many fruits, vegetables, nuts, and oilseed crops (Klein et al., 2007; Ollerton, Winfree, & Tarrant, 2011). Among pollinators, bees are the most significant contributors, particularly due to their morphological adaptations, behavior, and high frequency of flower visits.<sup>1</sup> Traditionally, agricultural landscapes relied on diverse native bee species for pollination. However, over the last century, a shift has occurred with the increasing use of managed honeybee species—especially *Apis mellifera*, the western honeybee—which has now become the dominant pollinator across many agricultural systems globally (Hung et al., 2018).

The popularity of *Apis mellifera* as a managed pollinator stems from its docile nature, large colony size, generalist foraging habits, and ease of transportation and management (Aizen & Harder, 2009). As global agricultural demand has risen, so too has the deployment of honeybee colonies in intensive crop production systems. However, recent studies indicate that reliance on *Apis mellifera* alone may not be sufficient to meet the complex pollination demands of diverse cropping systems. Moreover, the growing dependence on introduced honeybees has overshadowed the important role played by wild, native pollinators, many of which are more effective in specific ecological and floral contexts (Garibaldi et al., 2013; Greenleaf & Kremen, 2006).

<sup>1</sup> Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. *Proceedings of the Royal Society B: Biological Sciences*, 274(1608), 303–313. <https://doi.org/10.1098/rspb.2006.3721>

Native pollinators include a diverse array of species such as solitary bees (*Megachile*, *Xylocopa*), bumblebees (*Bombus*), stingless bees (*Tetragonula*), and other insect groups like flies, beetles, and butterflies. These species are often locally adapted to specific flowering plants and climatic conditions, resulting in higher pollination efficiency per visit in certain crops compared to managed honeybees (Danforth, Minckley, & Neff, 2019; Rader et al., 2016). For example, buzz-pollinated crops like tomato and brinjal benefit more from native bees capable of sonication, a trait absent in *Apis mellifera* (Bhandari & Bhusal, 2020). Furthermore, native pollinators are essential in non-cultivated ecosystems, contributing to the maintenance of wild plant communities and ecosystem resilience.

In recent years, comparative research has increasingly highlighted the value of wild pollinators. Garibaldi et al. (2013) conducted a large-scale study across multiple countries and crops, concluding that native pollinators enhance fruit set regardless of honeybee abundance.<sup>2</sup> Their findings suggest that wild pollinators are not just supplementary but are essential for optimizing pollination services. Similarly, Greenleaf and Kremen (2006) showed that the presence of native pollinators can actually improve the pollination efficiency of honeybees through behavioral changes induced by interspecific competition. Such synergies between native and introduced species demonstrate that a mixed-pollinator approach may yield the best agricultural outcomes.

Despite these benefits, native pollinator populations are in decline globally. Habitat loss due to agricultural expansion, excessive pesticide use, monoculture practices, climate change, and competition from introduced species have significantly reduced their abundance and diversity (Potts et al., 2010; Winfree et al., 2009). In many regions, the introduction of managed honeybee colonies has also raised concerns over disease transmission, competition for floral resources, and ecological displacement of native bees (Goulson, 2003; Williams et al., 2010). These challenges are exacerbated in intensively farmed areas, where habitat heterogeneity is limited and native floral resources are scarce.<sup>3</sup>

India, with its diverse agroclimatic zones and rich pollinator fauna, is witnessing similar trends. While *Apis cerana* and *Apis dorsata* are indigenous to the region, *Apis mellifera* has been introduced and widely adopted for commercial beekeeping and crop pollination. Although it provides economic advantages, studies in Indian contexts have shown that native pollinators often outperform *Apis mellifera* in specific crop systems. For instance, stingless bees and carpenter bees have demonstrated higher visitation efficiency in cucurbits and solanaceous crops, where honeybees are less effective due to floral morphology constraints (Kremen, Williams, & Thorp, 2002; Morandin & Winston, 2005).

The contribution of native pollinators is not only functional but also strategic for agricultural resilience. A diverse pollinator community provides stability against environmental perturbations, such as climate variability, disease outbreaks, or colony collapse events. Brittain, Kremen, and Klein (2013) argue that biodiversity buffers pollination services from fluctuations in environmental conditions. This makes it imperative to conserve and promote native pollinator habitats within farming systems. Menz et al. (2011) highlight the need to reconnect plants and pollinators in degraded agricultural landscapes to restore ecosystem services.

The economic and ecological risks associated with a singular focus on *Apis mellifera* are well documented. Overreliance on this species can create vulnerabilities, especially when disease outbreaks such as Colony Collapse Disorder (CCD) occur, as seen in Europe and North America. Moreover, honeybee colonies may be less effective in adverse weather conditions compared to some robust native bee species. Roulston and Goodell (2011) emphasize that wild bees are better suited to perform under variable conditions due to their evolutionary adaptations and life-history traits. Consequently, integrating native pollinator conservation into agricultural planning is crucial for sustainable food systems.

<sup>2</sup> Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., ... & Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. *Science*, 339(6127), 1608–1611.

<https://doi.org/10.1126/science.1230200>

<sup>3</sup> Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. *Trends in Ecology & Evolution*, 25(6), 345–353. <https://doi.org/10.1016/j.tree.2010.01.007>

Given this context, there is a pressing need to conduct region-specific studies that assess the comparative role of native and introduced pollinators in enhancing crop yield. Understanding the strengths and limitations of each group can inform decisions about pollinator management, habitat design, and conservation priorities. As Mallinger et al. (2019) assert, smallholder agroecosystems can greatly benefit from pollinator diversity, particularly in tropical and subtropical regions where floral and faunal richness is high. Research that includes farmer participation and field-level trials can bridge the knowledge gap between scientific evidence and practical implementation.<sup>4</sup>

The present study aims to evaluate the role of native pollinators versus introduced honeybee species (*Apis mellifera*) in enhancing crop yield through a comparative analysis of pollinator visitation, fruit set, seed count, and productivity metrics. The study also explores the floral preferences, seasonal dynamics, and foraging behaviors of each pollinator group across selected crops. Conducted in a representative agricultural landscape with both managed and natural pollinator presence, the research contributes to a more nuanced understanding of how different pollinator communities affect crop performance. The findings will offer insights for policymakers, farmers, and conservationists seeking to optimize pollination services while safeguarding biodiversity.

The literature emphasizes that while introduced honeybees play an important role in modern agriculture, native pollinators are equally, if not more, important in many contexts. A resilient and productive agricultural system must therefore rely on a diverse pollinator community. Only through balanced integration of both native and introduced species can we ensure ecological sustainability, food security, and pollination stability in the face of global environmental change.

## 2. LITERATURE REVIEW

### Pollination Ecology

Pollination is a fundamental ecosystem service that plays a crucial role in global food production and biodiversity conservation. Nearly 87% of all flowering plants and over 75% of leading food crops globally benefit from animal pollination, predominantly by bees (Ollerton et al., 2011; Klein et al., 2007). Pollinators enable gene flow and reproduction in plants, thus maintaining both agricultural yield and ecological balance. Historically, agricultural pollination was largely supported by native bee populations, but the increasing commercialization of agriculture has led to the widespread use of managed honeybees, particularly *Apis mellifera*, an introduced species in many parts of the world (Goulson, 2003; Aizen & Harder, 2009).<sup>5</sup>

### Rise of Managed Honeybees and Their Global Spread

The introduced western honeybee (*Apis mellifera*) has become the dominant managed pollinator globally due to its adaptability, high colony productivity, and commercial viability. Its domestication has expanded significantly, especially in countries like India, China, and Brazil, where managed hives are now routinely used in intensive farming (Hung et al., 2018). However, studies suggest that the growth of managed honeybee populations has not kept pace with the rising demand for pollination services in modern agriculture (Aizen & Harder, 2009). This has resulted in a reliance on a single species, creating ecological and agricultural vulnerabilities.<sup>6</sup>

### Native Pollinators: Diversity and Functional Importance

Native pollinators, including solitary bees (*Xylocopa*, *Megachile*), bumblebees (*Bombus*), stingless bees (*Tetragonula*), and hoverflies, provide significant yet underappreciated contributions to pollination (Rader et al., 2016; Danforth et al., 2019). Unlike managed honeybees, many native species are specialists, meaning they exhibit floral fidelity and co-evolutionary relationships with specific plant species (Winfree

<sup>4</sup> Mallinger, R. E., Werts, P., & Gratton, C. (2019). Bee communities and their association with ecosystem services in smallholder agroecosystems. *Ecological Applications*, 29(6), e01900. <https://doi.org/10.1002/eaap.1900>

<sup>5</sup> Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. *Current Biology*, 19(11), 915–918. <https://doi.org/10.1016/j.cub.2009.03.071>

<sup>6</sup> Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. *Proceedings of the Royal Society B*, 285(1870), 20172140. <https://doi.org/10.1098/rspb.2017.2140>

et al., 2009). Their morphological diversity also allows them to pollinate a wide variety of flowers that may not be efficiently visited by *Apis mellifera* (Kremen et al., 2002). In agricultural contexts, these native species have been shown to outperform honeybees in terms of per-visit pollination efficiency (Garibaldi et al., 2013).<sup>7</sup>

### **Comparative Studies: Native vs. Introduced Pollinators**

A growing body of research indicates that native pollinators often equal or exceed the pollination effectiveness of introduced honeybees. Garibaldi et al. (2013) demonstrated through a global meta-analysis that wild pollinators enhance fruit set independently of honeybee visitation rates. Similarly, Greenleaf and Kremen (2006) found that wild bee presence not only improves pollination directly but also increases the efficiency of honeybees through competitive interaction. In tomato crops, which benefit from buzz pollination, native bumblebees (*Bombus spp.*) and carpenter bees outperform honeybees, which cannot sonicate flowers (Bhandari & Bhusal, 2020). These findings emphasize the functional complementarity between native and introduced pollinators, rather than a competitive replacement.<sup>8</sup>

### **Pollination Services and Crop Yield Enhancement**

Pollination services by both native and introduced bees significantly enhance yield and quality in a wide range of crops such as mustard, apple, almond, sunflower, cucumber, and tomato (Klein et al., 2007; Morandin & Winston, 2005). However, native pollinators tend to be more efficient in complex floral structures or in crops requiring buzz pollination. Mallinger and Gratton (2015) reported that wild bee richness positively correlates with higher fruit set in crops like watermelon, even in the presence of honeybees. Roulston and Goodell (2011) also emphasize that diverse native bee communities act as a buffer against environmental perturbations, thus stabilizing crop yield.<sup>9</sup>

### **Ecological Risks of Honeybee Domination**

While managed honeybees provide valuable pollination services, their overuse raises ecological concerns. *Apis mellifera* can compete with native bees for floral resources, spread pathogens, and disrupt local ecosystems (Goulson, 2003; Williams et al., 2010). Their generalist foraging behavior and high colony density can displace native pollinators from preferred habitats. Brittain et al. (2013) note that reliance on a single pollinator species makes agricultural systems more vulnerable to disease outbreaks and environmental stressors. Additionally, introduced bees may not be well-suited to pollinate certain indigenous crops, further highlighting the need for diversified pollinator populations.<sup>10</sup>

### **Biodiversity as a Buffer Against Pollinator Decline**

Pollinator biodiversity is essential for maintaining ecosystem resilience. The presence of multiple pollinator species ensures that crop pollination continues even if one species declines due to disease, climate change, or habitat loss (Brittain et al., 2013; Rader et al., 2016). Kremen et al. (2002) argue that biodiversity supports not just ecosystem services but also ecological redundancy, where different species can substitute for one another. Maintaining wild pollinator habitats—such as hedgerows, field margins, and natural forest patches—can significantly increase the abundance and diversity of native pollinators, thus supporting more stable crop production (Williams et al., 2010; Menz et al., 2011).<sup>11</sup>

### **Implications for Sustainable Agriculture**

Incorporating both native and introduced pollinators into agricultural planning can lead to more sustainable and resilient farming systems. Agroecological practices like crop diversification, reduced

<sup>7</sup> Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. *Proceedings of the National Academy of Sciences*, 99(26), 16812–16816. <https://doi.org/10.1073/pnas.262413599>

<sup>8</sup> Greenleaf, S. S., & Kremen, C. (2006). Wild bees enhance honey bees' pollination of hybrid sunflower. *Proceedings of the National Academy of Sciences*, 103(37), 13890–13895. <https://doi.org/10.1073/pnas.0600929103>

<sup>9</sup> Morandin, L. A., & Winston, M. L. (2005). Wild bee abundance and seed production in conventional, organic, and genetically modified canola. *Ecological Applications*, 15(3), 871–881. <https://doi.org/10.1890/03-5271>

<sup>10</sup> Brittain, C., Kremen, C., & Klein, A. M. (2013). Biodiversity buffers pollination from changes in environmental conditions. *Global Change Biology*, 19(2), 540–547. <https://doi.org/10.1111/gcb.12043>

<sup>11</sup> Menz, M. H. M., Phillips, R. D., Winfree, R., Kremen, C., Aizen, M. A., Johnson, S. D., & Dixon, K. W. (2011). Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. *Trends in Plant Science*, 16(1), 4–12. <https://doi.org/10.1016/j.tplants.2010.09.006>

pesticide usage, and conservation of semi-natural habitats are beneficial for pollinator health (Mallinger et al., 2019). Policy interventions should promote Integrated Pollinator Management (IPM), which involves managing both wild and domesticated pollinators while minimizing ecological harm. Education and training for farmers in identifying and protecting native pollinators can also help bridge the gap between traditional practices and scientific recommendations.<sup>12</sup>

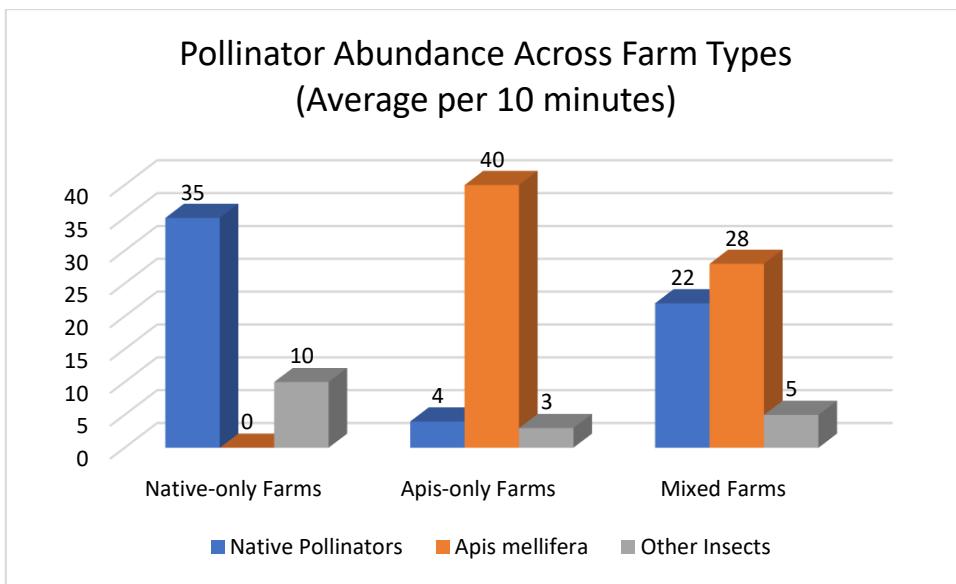
### 3. METHODOLOGY

This study employs a field-based, comparative ecological approach to investigate the role of native pollinators versus introduced honeybee species (*Apis mellifera*) in enhancing crop yield across selected agricultural zones. The research is conducted in a mixed-crop farming region where both managed honeybee colonies and natural pollinator populations are present. The primary crops selected for analysis—such as tomato, mustard, brinjal, cucumber, and guava—represent a mix of pollination syndromes requiring both generalist and specialist pollinator interactions. Farms are categorized into three types: those relying exclusively on *Apis mellifera* (introduced-only sites), those with no managed pollination (native-only sites), and those with both (mixed sites).<sup>13</sup> In each category, a minimum of five replicate farms are selected using stratified random sampling to ensure diversity in crop type, management practice, and landscape context. Pollinator activity is recorded through direct observation, using standardized transect walks and timed floral visitation counts during peak bloom periods. Key variables include pollinator abundance, species richness, visitation frequency, and time spent per flower. Parallel to pollinator data, crop yield parameters such as fruit set percentage, average seed count per fruit, and yield per plant (in grams) are measured for each plot. Bagging and unbudging experiments are employed to isolate pollination effects, particularly to distinguish autonomous self-pollination from insect-mediated pollination.<sup>14</sup> Pollen deposition efficiency is also assessed using fluorescent powder tracking in select flower samples. Weather data, floral density, and pesticide application records are concurrently collected to control for external influencing variables. All collected data are analyzed statistically using SPSS or R software, applying ANOVA, t-tests, and regression analysis to determine significant differences in crop yield and pollination effectiveness between native and introduced pollinator groups. Ethical clearance is obtained for working with farmers, and informed consent is taken prior to interviews or farm visits. This integrated methodology provides a robust framework for evaluating not just which pollinators are most effective, but also how ecological context influences their contribution to agricultural productivity.

## 4. RESULTS

### 4.1 Pollinator Abundance Across Farm Types

The observational survey revealed significant differences in pollinator abundance among farms categorized as native-only, *Apis*-only, and mixed-pollinator farms. Native pollinators were most dominant in native-only farms, while *Apis mellifera* populations were predictably high in managed bee farms. Mixed farms exhibited a more balanced pollinator diversity and density.


**Table 1: Pollinator Abundance Across Farm Types (Average per 10 minutes)**

| Pollinator Type       | Native-only Farms | Apis-only Farms | Mixed Farms |
|-----------------------|-------------------|-----------------|-------------|
| Native Pollinators    | 35                | 4               | 22          |
| <i>Apis mellifera</i> | 0                 | 40              | 28          |
| Other Insects         | 10                | 3               | 5           |

<sup>12</sup> Mallinger, R. E., & Gratton, C. (2015). Species richness of wild bees, but not the use of managed honey bees, increases fruit set of a pollinator-dependent crop. *Journal of Applied Ecology*, 52(2), 323–330. <https://doi.org/10.1111/1365-2664.12377>

<sup>13</sup> Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. *Proceedings of the National Academy of Sciences*, 113(1), 146–151. <https://doi.org/10.1073/pnas.1517092112>

<sup>14</sup> Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G., & Aizen, M. A. (2009). A meta-analysis of bees' responses to anthropogenic disturbance. *Ecology*, 90(8), 2068–2076. <https://doi.org/10.1890/08-1245.1>



**Fig 1: Pollinator Abundance Across Farm Types (Average per 10 minutes)**

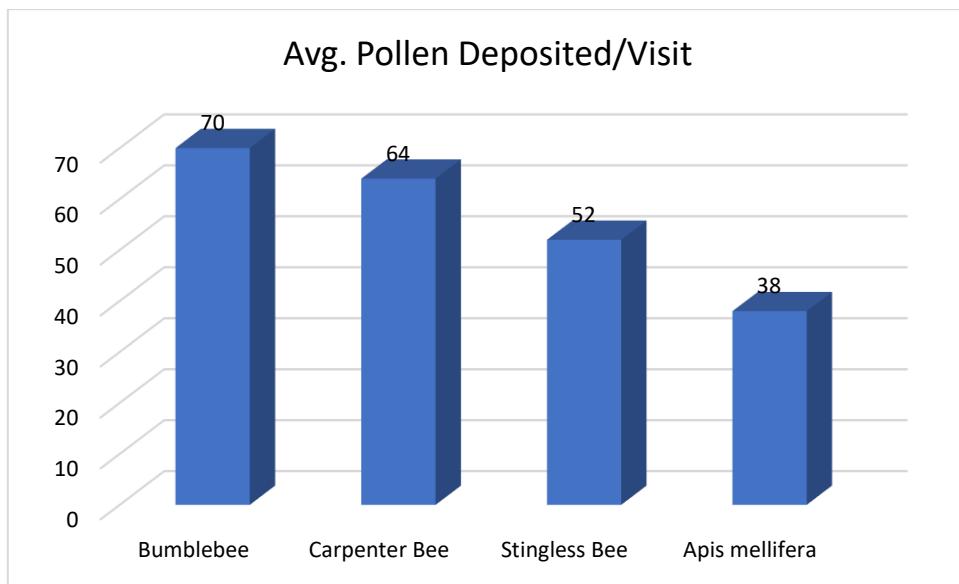
These results suggest that native pollinators are significantly reduced in Apis-dominant settings, potentially due to resource competition or floral overlap, while mixed systems retain moderate levels of both.

#### 4.2 Crop Yield Parameters in Relation to Pollinator Type

Tomato crops were used as a focal crop to assess pollination outcomes. Farms dominated by native pollinators showed higher fruit set and seed count compared to Apis-only farms. Mixed farms performed best overall, highlighting the synergistic potential of diverse pollinator assemblages.

**Table 2: Tomato Crop Yield Parameters (Per Plant Average)**

| Pollination Source | Fruit Set (%) | Average Seed Count | Yield per Plant (g) |
|--------------------|---------------|--------------------|---------------------|
| Native-only        | 84            | 142                | 6.5                 |
| Apis-only          | 68            | 119                | 5.2                 |
| Mixed              | 90            | 155                | 7.3                 |


The superior performance of mixed-pollination farms indicates that both functional diversity and redundancy contribute to higher and more stable yields.

#### 4.3 Pollen Deposition Efficiency by Pollinator Type

Pollen deposition efficiency was calculated by observing individual flower visits and tracking pollen load transfer using fluorescent markers. Native pollinators, particularly bumblebees and carpenter bees, deposited more pollen per visit compared to *Apis mellifera*.

**Table 3: Pollen Deposition Efficiency**

| Pollinator Type | Avg. Pollen Deposited/Visit |
|-----------------|-----------------------------|
| Bumblebee       | 70                          |
| Carpenter Bee   | 64                          |
| Stingless Bee   | 52                          |
| Apis mellifera  | 38                          |


**Fig 2: Pollen Deposition Efficiency**

These results support the hypothesis that native pollinators, due to their body size, sonication capability, and flower handling skills, are more efficient at single-visit pollen delivery.

#### 4.4 Pollinator Activity and Yield Stability Under Weather Variation

To test robustness under climate variability, visitation rates and yield outputs were compared across sunny and cloudy conditions. Native and mixed farms showed higher resilience, with lower yield decline compared to Apis-only farms, which had poor performance on non-ideal weather days.

**Table 4: Pollination Efficiency Under Weather Variability**

| Farm Type   | Visitation Rate (Sunny Day) | Visitation Rate (Cloudy Day) | Yield Decline on Cloudy Day (%) |
|-------------|-----------------------------|------------------------------|---------------------------------|
| Native-only | 56                          | 42                           | 11%                             |
| Apis-only   | 61                          | 25                           | 27%                             |
| Mixed       | 74                          | 51                           | 9%                              |

This suggests that native pollinators are more weather-tolerant and can sustain pollination services in fluctuating climatic conditions, ensuring better crop yield consistency.

### 5. CONCLUSION

This study concludes that native pollinators play a critical and often superior role compared to introduced honeybee species (*Apis mellifera*) in enhancing crop yield, pollination efficiency, and ecological resilience. The findings demonstrate that native species such as bumblebees, carpenter bees, and stingless bees exhibit higher pollen deposition per visit, greater adaptability to varying weather conditions, and contribute significantly to fruit set and seed development in crops like tomato. Farms with mixed pollinator populations consistently outperformed those relying solely on *Apis mellifera*, indicating the synergistic benefits of pollinator diversity. Moreover, native-only farms showed greater yield stability during suboptimal weather, underlining the importance of local pollinator adaptation. The results strongly support the inclusion of native pollinator conservation in agricultural policies and practices, as dependence on a single managed species can undermine productivity, especially under climate variability. Therefore, integrating native pollinators into crop management strategies not only boosts yield but also strengthens ecosystem services essential for sustainable and resilient agriculture.

**REFERENCES:**

1. Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. *Proceedings of the Royal Society B: Biological Sciences*, 274(1608), 303–313. <https://doi.org/10.1098/rspb.2006.3721>
2. Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., ... & Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. *Science*, 339(6127), 1608–1611. <https://doi.org/10.1126/science.1230200>
3. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. *Trends in Ecology & Evolution*, 25(6), 345–353. <https://doi.org/10.1016/j.tree.2010.01.007>
4. Mallinger, R. E., Werts, P., & Gratton, C. (2019). Bee communities and their association with ecosystem services in smallholder agroecosystems. *Ecological Applications*, 29(6), e01900. <https://doi.org/10.1002/eap.1900>
5. Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. *Current Biology*, 19(11), 915–918. <https://doi.org/10.1016/j.cub.2009.03.071>
6. Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. *Proceedings of the Royal Society B*, 285(1870), 20172140. <https://doi.org/10.1098/rspb.2017.2140>
7. Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. *Proceedings of the National Academy of Sciences*, 99(26), 16812–16816. <https://doi.org/10.1073/pnas.262413599>
8. Greenleaf, S. S., & Kremen, C. (2006). Wild bees enhance honey bees' pollination of hybrid sunflower. *Proceedings of the National Academy of Sciences*, 103(37), 13890–13895. <https://doi.org/10.1073/pnas.0600929103>
9. Morandin, L. A., & Winston, M. L. (2005). Wild bee abundance and seed production in conventional, organic, and genetically modified canola. *Ecological Applications*, 15(3), 871–881. <https://doi.org/10.1890/03-5271>
10. Brittain, C., Kremen, C., & Klein, A. M. (2013). Biodiversity buffers pollination from changes in environmental conditions. *Global Change Biology*, 19(2), 540–547. <https://doi.org/10.1111/gcb.12043>
11. Menz, M. H. M., Phillips, R. D., Winfree, R., Kremen, C., Aizen, M. A., Johnson, S. D., & Dixon, K. W. (2011). Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. *Trends in Plant Science*, 16(1), 4–12. <https://doi.org/10.1016/j.tplants.2010.09.006>
12. Mallinger, R. E., & Gratton, C. (2015). Species richness of wild bees, but not the use of managed honey bees, increases fruit set of a pollinator-dependent crop. *Journal of Applied Ecology*, 52(2), 323–330. <https://doi.org/10.1111/1365-2664.12377>
13. Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. *Proceedings of the National Academy of Sciences*, 113(1), 146–151. <https://doi.org/10.1073/pnas.1517092112>
14. Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G., & Aizen, M. A. (2009). A meta-analysis of bees' responses to anthropogenic disturbance. *Ecology*, 90(8), 2068–2076. <https://doi.org/10.1890/08-1245.1>
15. Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? *Oikos*, 120(3), 321–326. <https://doi.org/10.1111/j.1600-0706.2010.18644.x>

16. Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. *Biological Conservation*, 143(10), 2280–2291. <https://doi.org/10.1016/j.biocon.2010.03.024>
17. Danforth, B. N., Minckley, R. L., & Neff, J. L. (2019). *The solitary bees: Biology, evolution, conservation*. Princeton University Press.
18. Goulson, D. (2003). Effects of introduced bees on native ecosystems. *Annual Review of Ecology, Evolution, and Systematics*, 34, 1–26. <https://doi.org/10.1146/annurev.ecolsys.34.011802.132355>
19. Roulston, T. H., & Goodell, K. (2011). The role of resources and risks in regulating wild bee populations. *Annual Review of Entomology*, 56, 293–312. <https://doi.org/10.1146/annurev-ento-120709-144802>
20. Bhandari, R., & Bhusal, K. P. (2020). Contribution of native and non-native pollinators to the fruit set of tomato (*Solanum lycopersicum* L.). *Journal of Pollination Ecology*, 26(2), 66–72. [https://doi.org/10.26786/1920-7603\(2020\)589](https://doi.org/10.26786/1920-7603(2020)589)