

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

AI in medical transcription and documentation: improving clinician efficiency

Srinivasa Kalyan Vangibhurathachhi

Srinivasa.Kalyan2627@gmail.com

Abstract:

Healthcare providers spend twice as much time on documentation as direct patient care, contributing to widespread physician burnout affecting 54% of US physicians and labour shortages within the healthcare sector. This article examines AI-powered solutions, including voice recognition and natural language processing, that can revolutionise medical documentation. Medical AI technologies like Dragon Medical One, Amazon Transcribe Medical, and Suki AI are already demonstrating significant potential for reducing documentation burden as well as improving accuracy across hospital, primary care, and telemedicine settings. Despite the obvious benefits, implementation faces challenges including privacy concerns, algorithmic bias, and clinician resistance. With proper attention to transparency, bias mitigation, and regulatory compliance, AI documentation systems can transform healthcare efficiency while preserving essential human-centred care.

Keywords: Artificial Intelligence, Medical Documentation, Natural Language Processing, Healthcare Efficiency, Clinical Decision Support.

1. INTRODUCTION

A major challenge within the healthcare system today is that clinicians spend twice as much time on medical reporting and documentation as they do providing healthcare. According to Kroth et al. (2018), for every hour of direct patient care physicians offer, nearly 2 additional hours are spent using electronic health records (EHR). Also, Arndt et al. (2017) indicated that physicians spend an average of 6 hours of their day using the EHR, with a majority of physicians indicating the time is still not sufficient for proper documentation and reporting. This massive burden to the healthcare providers contributes directly to the alarming levels of burnout crisis among physicians, where 54% of US physicians reported a high level of burnout. Exacerbating this problem, a larger number of EHR entries contain errors leading to mistakes that endanger patient safety or decrease the quality of care (Lindén-Lahti et al., 2022). Precisely, a 2023 Johns Hopkins study showed that an estimated 800,000 deaths or disabilities each year in the US are linked to diagnostic errors, which is partly due to incomplete or erroneous documentation (Simbo AI, 2025). These challenges highlight a desperate need for transformation within the healthcare documentation system.

The emergence of Artificial intelligence offers a powerful solution for revolutionising medical documentation. Advanced systems like Dragon Medical One, Amazon Transcribe Medical and Suki AI can already listen to natural patient-clinician conversations in real-time and efficiently generate structured clinical notes (Tran, 2025; Pellecchia, 2022). These AI-based technologies extract relevant medical information from unstructured patient-clinician dialogue, while machine learning algorithms integrate the information seamlessly with the EHR systems to predict and populate fields. In addition to transcription, the AI tools offer clinical decision support, flagging potential medication interactions and offering evidence-based diagnoses. Thus, these systems offer substantial solutions to the major challenge of burnout and documentation errors.

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Although AI holds great potential for tackling the complexities of medical documentation and transcription, significant challenges remain before these systems can be safely and effectively integrated into healthcare. Ethical concerns like algorithmic biases have emerged. As indicated by Chin et al. (2023), Optum, an AI system used by UnitedHealth Group to evaluate intensive healthcare needs for patients, underestimated the level of care black patients need as opposed to white patients, resulting in less funding being directed to black patients who have the same level of needs as white patients. This indicates the challenges of embracing AI systems unchecked. There are also challenges of privacy regulations such as HIPAA and GDPR, and ensuring the systems do not invade the privacy of people. For the systems to be effective, there is a need for transparency and reliability. This paper examines both the transformative potential and practical challenges of AI in medical documentation. Below are the specific objectives:

- i) Evaluate the solutions offered by AI systems on medical documentation and transcription.
- ii) Analyse AI's impact across hospital, primary care, and telemedicine settings to identify tailored use cases and benefits.
- iii) Assess key barriers to AI adoption, including privacy risks, algorithmic bias, and clinician resistance, with mitigation strategies.

2 PROBLEM STATEMENT

The burden of clinical documentation and transcription has reached a crisis level, resulting in extreme burnout among physicians and inaccuracies in records. This lowers the quality of care the patient receives and has long-term impacts on patients' outcomes. (Pellecchia, 2022). Traditional documentation methods and manual EHR systems are time-consuming and prone to errors, and have persistent interoperability gaps that create workflow bottlenecks. These challenges are particularly acute in fast-paced environments like emergency departments, where documentation delays can directly impact patient outcomes. All these challenges can be addressed by AI-powered documentation solutions such as Dragon Medical One and Suki AI. These systems are able to reduce the documentation time and improve the quality of the transcription to eliminate errors and inconsistencies. Nonetheless, realising AI's full potential requires addressing privacy concerns around voice data collection to ensure compliance with HIPAA and other regulatory frameworks. Other challenges that need to be addressed are clinician scepticism on the reliability of the new systems. By addressing these challenges, the AI system will transform documentation from a burden to a strategic asset that will improve healthcare.

3.0 AI SOLUTIONS IN MEDICAL DOCUMENTATION

3.1 Voice Recognition and NLP (Natural Language Processing)

AI-enabled voice recognition and natural language processing systems like Amazon Transcribe Medical and Nuance Dax are already revolutionising clinical documentation by enabling advanced speech-to-text on-version. These systems utilise deep learning algorithms to process natural clinician-patient conversations in real-time, while identifying medical terminology and contextual relationships to generate well-structured and useful clinical notes (Krishnan et al., 2023). Systems like the Amazon Transcribe Medical use neural networks trained on millions of physicians' conversations and interactions, ensuring the accurate identification of patients' systems, medications, and treatment plans (AWS, 2025). This offers substantial benefit: the system ensures faster clinical note completion, while also ensuring high-level accuracy of the critical clinical data; it also improves interoperability between healthcare systems and reduces missed diagnoses. (Saadat et al., 2025). In the long run, this reduces burnout among clinicians and increases the number of hours they get to spend with patients (Kumar and Gond, 2023).

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Figure 1: A1 in Healthcare

3.2 Automated Charting

Speciality AI documentation systems, such as Epic SmartText, use machine learning to adapt templates based on speciality like psychiatry and cardiology, visit type or individual preferences (Vuong, 2024). The system analyses the past documentation patterns to offer accurate diagnoses, avoid inaccuracies, and reduce redundancy in data entry (Alowais et al., 2023). These tools are able to learn from corrections and established databases, enabling continuous improvement in the accuracy and consistency of suggestions.

3.3 Clinical Decision Support.

The AI medical documentation and virtual assistant also have clinical decision support, which integrates seamlessly with documentation workflows. According to Hinostroza Fuentes et al. (2025), Clinical Decision Support Systems supported by AI provide clinicians with real-time predictive data, evidence-based recommendations, as well as improved risk assessments. A study by Al-Antari (2023) showed that AI-powered Clinical Decision Support Systems lead to a 5% change in treatment decisions, driven by improved quality of diagnoses and a better decision-making process. These systems leverage big datasets that integrate genetic data. Lifestyle and environmental factors support the automation of personalised treatment plans, which enhances patient care. As indicated by Ilan (2021), these systems go beyond documentation and transcription to diagnostic analyses that offer real-world clinical data and accurate recommendations tailored to current conditions.

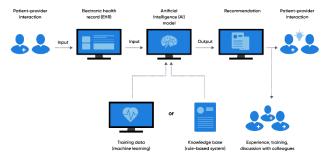


Figure 2: AI medical documentation and clinical decision support

4.0 SECTOR-SPECIFIC APPLICATIONS

4.1 Hospitals

The hospital environment presents the most compelling use cases for AI-powered medical documentation systems, particularly large facilities with labour issues. Increasingly, hospitals are integrating AI documentation systems in their operations, particularly intensive care units, to boost workflow efficiency. Speech recognition and natural language processing models can intelligently extract and organise critical data, including ventilator parameters, vasopressor titration, and neurological assessments (Srichawla, 2024). This reduces communication errors and enhances the quality of diagnosis. Within emergency departments, AI documentation systems can detect at-risk patients, enabling faster intervention, which demonstrates the importance of these tools in directly impacting patient outcomes (Othman et al., 2024).

4.2. Primary Care

Primary care practices are already leveraging AI documentation tools to address chronic administrative burdens and labour shortage while improving preventive care. According to the American Medical

IIIRP

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

Association (2025), physicians, including primary care physicians, have a positive view of AI, particularly in documentation and administrative work. Precisely, the physicians who used AI systems indicated a 75% improvement in work efficiency, a 54% reduction in stress and burnout, and a 48% reduction in cognitive overload. Already, organisations like the Permanente Medical Group. The largest US-based medical community known for quality, research and technology, with over 9,800 physicians and 44,000 nurses, have already introduced Ambient AI, which is AI support used for documentation. After the introduction, the physicians reported, on average, saving an hour per day at the keyboard. Ambient AI uses a microphone on a secure smartphone to transcribe patient encounters. The conversation is later analysed and summarised by machine learning and natural-language processing into useful clinical notes that can inform decision-making while offering care (American Medical Association, 2025).

Smaller primary care practices can leverage Cloud-based solutions such as Amazon Transcribe Medical to reduce their documentation time and other administrative workload. This will be critical in ensuring that the physicians are able to have additional patients daily, addressing the already existing labour shortage within the medical sector globally. Cloud-based solutions for primary care practices are appealing as they do not require massive technical infrastructure, which makes the technology accessible to practices without an IT department.

4.3 Telemedicine

Telemedicine platforms are also adopting AI documentation capabilities to address challenges in virtual care. Teladoc, a leading telehealth provider, has already integrated AI in their operations for analysing clinician-patient conversations during visits, which automatically identifies and emphasises the critical concerns and symptoms (Teladoc Health, 2025). Also, post virtual encounters, these AI systems generate comprehensive encounter summaries containing the clinician's assessment and the clinical notes. This massively reduces the documentation workload while offering both parties clear and consistent information. The technology will continue to revolutionise chronic care management, where data accuracy is critical for identifying symptom progression within the virtual setting (Toosi et al., 2025).

5.0 CHALLENGES TO ADOPTION

5.1 Privacy and Security

The rapid adoption of AI-powered medical documentation tools and systems have raised significant privacy and security concerns in regards to compliance with HIPAA compliance. Cloud-based machine learning that enables speech recognition has inherent risk as sensitive patient-clinician conversations are transferred and stored on third-party servers. As indicated by Seh et al. (2020), medical infrastructures are already at heightened risks of data breaches and hacks and unauthorised internal disclosures, a challenge that is compounded by the fact that many listening tools used for documentation capture even potentially sensitive patient disclosures in exam rooms. Therefore, there is a need to adopt a safety and privacy approach when developing and applying these tools.

Figure 3: AI in Healthcare: Security and Privacy Concerns

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

5.2 Algorithmic Bias

Algorithmic bias in medical documentation AI presents a major challenge, particularly for noon-native speakers and patients from diverse linguistic backgrounds. Research from Stanford's NLP group indicated that speech recognition systems have high error rates, around 35%, for clinicians with accents compared to native English speakers (Koenecke et al., 2020). This disparity can lead to significant inaccuracies in medical documentation, with a potential negative impact on patient care and safety. This is particularly concerning when the technology is used in intensive care units, where timely interventions are critical.

5.3 Clinician Resistance

Similar to other organisational changes, clinicians who are used to the traditional ways of documentation resist this challenge based on the concerns of liability due to AI-generated errors that have a negative impact on patient care (Raposo, 2025). This concern about the accountability of documentation AI is particularly strong among specialists who deal with complex healthcare cases, where there is a need for nuance. To address this challenge, there is a need for transparency and ensuring clinician support in critical decision-making. The systems should be trained to demonstrate the AI's decision-making process while also allowing the clinicians to offer feedback for system improvement. This will build trust and address the liability concerns.

Despite the challenges, the future of AI in medical documentation points to more integrated and sophisticated solutions that use multiple data streams, from speech, gestures and facial recognition (Elhadad et al. 2024). Currently, the regulatory framework for AI is lagging due to the rapid pace of development. However, increasing government organisations like the EU are developing the right framework to protect patient data as well as developers. As these frameworks develop, there will be guardrails in place to protect the key stakeholders, further supporting growth and development (European Commission, 2025)

6.0 CONCLUSION

The integration of Artificial Intelligence into medical documentation offers a significant boost to healthcare efficiency and quality. By automating documentation tasks, these technologies reduce the administrative burden that contributes to physician burnout while simultaneously reducing errors in critical patient records. When implemented thoughtfully, with rigorous attention to privacy, bias mitigation, and clinician trust, these technologies pose massive benefits to patients and address several challenges among clinicians.

For the benefits of AI in medical documentation to be realised, there is a need for transparency in AI decision-making, interoperability across healthcare systems, and continuous adaptation to evolving clinical needs. As regulatory frameworks mature, healthcare organisations need to view AI documentation not as a replacement for human expertise, but as a powerful tool that complements human expertise, freeing clinicians to practice at the top of their license while maintaining the human connection at medicine's core.

REFERENCES:

- [1] Al-Antari, M. A. (2023). Artificial intelligence for medical diagnostics—Existing and future AI technology!. Diagnostics, 13(4), 688.
- [2] Alowais, S.A., Alghamdi, S.S., Alsuhebany, N., Alqahtani, T., Saleh, K.B., Yami, A., Harbi, S.A. and Albekairy, A.M. (2023). Revolutionizing healthcare: the Role of Artificial Intelligence in Clinical Practice. *BMC Medical Education*, 23(1), pp.1–15. doi:https://doi.org/10.1186/s12909-023-04698-z.
- [3] American Medical Association. (2025). *Physicians' greatest use for AI? Cutting administrative burdens*. [online] Available at: https://www.ama-assn.org/practice-management/digital-health/physicians-greatest-use-ai-cutting-administrative-burdens.

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

- [4] Arndt, B. G., Beasley, J. W., Watkinson, M. D., Temte, J. L., Tuan, W. J., Sinsky, C. A., & Gilchrist, V. J. (2017). Tethered to the EHR: primary care physician workload assessment using EHR event log data and time-motion observations. The Annals of Family Medicine, 15(5), 419-426.
- [5] AWS (2025). *Amazon Transcribe Medical*. [online] Amazon Web Services, Inc. Available at: https://aws.amazon.com/transcribe/medical/.
- [6] Elhadad, A., Hamad, S., Elfiky, N., Alanazi, F., Taloba, A. I., & El-Aziz, R. M. A. (2024). Advancing Healthcare: Intelligent Speech Technology for Transcription, Disease Diagnosis, and Interactive Control of Medical Equipment in Smart Hospitals. AI, 5(4), 2497-2517.
- [7] European Commission (2025). *Artificial Intelligence in healthcare*. [online] Public Health. Available at: https://health.ec.europa.eu/ehealth-digital-health-and-care/artificial-intelligence-healthcare en.
- [8] Hinostroza Fuentes, V.G., Karim, H.A., Tan, M.J.T. and AlDahoul, N. (2025). AI with agency: a vision for adaptive, efficient, and ethical healthcare. *Frontiers in Digital Health*, 7. doi:https://doi.org/10.3389/fdgth.2025.1600216.
- [9] Ilan, Y. (2021). Improving global healthcare and reducing costs using second-generation artificial intelligence-based digital pills: a market disruptor. International Journal of Environmental Research and Public Health, 18(2), 811.
- [10] Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z., Toups, C., Rickford, J.R., Jurafsky, D. and Goel, S. (2020). Racial disparities in automated speech recognition. Proceedings of the National Academy of Sciences, [online] 117(14), p.201915768. doi:https://doi.org/10.1073/pnas.1915768117.
- [11] Krishnan, G., Singh, S. and Dhar, M. (2023). Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm. *Frontiers in artificial intelligence*, [online] 6(6). doi:https://doi.org/10.3389/frai.2023.1227091.
- [12] Kroth, P. J., Morioka-Douglas, N., Veres, S., Pollock, K., Babbott, S., Poplau, S., ... & Linzer, M. (2018). The electronic elephant in the room: physicians and the electronic health record. JAMIA open, 1(1), 49-56.
- [13] Kumar, A., & Gond, A. (2023). Natural language processing: Healthcare achieving benefits via NLP. ScienceOpen Preprints.
- [14] Lindén-Lahti, C., Kivivuori, S. M., Lehtonen, L., & Schepel, L. (2022, May). Implementing a new electronic health record system in a university hospital: the effect on reported medication errors. In Healthcare (Vol. 10, No. 6, p. 1020). MDPI.
- [15] Othman, M. I., Nashwan, A. J., Abujaber, A. A., & Khatib, M. Y. (2024). Artificial intelligence applications in the intensive care unit for sepsis-associated encephalopathy and delirium: a narrative review. Avicenna, 2023(2), 11.
- [16] Pellecchia, R. (2022). Leveraging AI via speech-to-text and LLM integration for improved healthcare decision-making in primary care.
- [17] Raposo, V. L. (2025). The fifty shades of black: about black box AI and explainability in healthcare. Medical Law Review, 33(1), fwaf005.
- [18] Saadat, S., Khalilizad Darounkolaei, M., Qorbani, M., Hemmat, A., & Hariri, S. (2025). Enhancing clinical documentation with AI: reducing errors, improving interoperability, and supporting real-time note-taking. Infoscience Trends, 2(3), 1-13.
- [19] Seh, A.H., Zarour, M., Alenezi, M., Sarkar, A.K., Agrawal, A., Kumar, R. and Khan, R.A. (2020). Healthcare data breaches: Insights and implications. *Healthcare*, [online] 8(2), p.133. doi:https://doi.org/10.3390/healthcare8020133.
- [20] Simbo AI (2025). Enhancing Documentation Efficiency in Healthcare: The Role of AI-Powered Electronic Health Records Simbo AI Blogs. [online] Simbo AI Blogs -. Available at: https://www.simbo.ai/blog/enhancing-documentation-efficiency-in-healthcare-the-role-of-ai-powered-electronic-health-records-2485801/ [Accessed 18 Jul. 2025].

E-ISSN: 2582-8010 • Website: www.ijlrp.com • Email: editor@ijlrp.com

- [21] Srichawla, B. S. (2024). Future of neurocritical care: integrating neurophysics, multimodal monitoring, and machine learning. World Journal of Critical Care Medicine, 13(2), 91397.
- [22] Teladochealth (2025). *Navigating the Intersection of AI and Virtual Care*. [online] Teladochealth.com. Available at: https://www.teladochealth.com/organizations/resources/navigating-the-intersection-of-ai-and-virtual-care.
- [23] Toosi, R., Tomraee, S., Khodabin, M., & Sakhaei, S. (2025). Telemedicine: An AI solution, at last. Code, Cognition & Society, 1(1), 59-87.
- [24] Tran, B. D. P. (2025). Beyond Automated Transcription: Contextual and Technical Considerations for Developing Digital Scribes for Clinical Documentation (Doctoral dissertation, University of California, Irvine).
- [25] Vuong, Q. P. (2024). The potential for artificial intelligence and machine learning in healthcare: the future of healthcare through smart technologies.