

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 1

Evolving Mainframe Batch: Java Workload

Strategies on z/OS

Chandra mouli Yalamanchili

chandu85@gmail.com

Abstract

IBM's z/OS platform has evolved into a market leader in enterprise computing known for its

unmatched reliability, security, and throughput. Over the past few decades, IBM has introduced

numerous innovations enabling Java applications to harness the full potential of z/OS, allowing

modern, portable code to benefit from the underlying high-performance system architecture.

This paper provides a comprehensive technical analysis of executing Java-based batch workloads

on IBM's z/OS, examining the rationale, benefits, methods, interoperability, performance

considerations, and common challenges. This paper details advantages and use cases and explores

BPXBATCH, BPXATSL, JZOS Batch Launcher, WebSphere Liberty Profile, and WebSphere

Compute Grid. Java's interoperability with COBOL and HLASM through Language

Environment (LE) and Java Native Interface (JNI) is thoroughly discussed. Performance tuning

strategies and methods for overcoming typical encoding and integration challenges are also

addressed.

Keywords: Java; z/OS; Batch Processing; BPXBATCH; BPXATSL; JZOS; Liberty Profile;

Compute Grid; JSR 352; COBOL; HLASM; JNI; LE; Performance; EBCDIC

Introduction

Batch processing is the systematic execution of high-volume, repetitive tasks without manual

intervention. Industries like banking, insurance, retail, and healthcare rely heavily on batch processing

for critical tasks such as end-of-day transaction settlement, invoicing, payroll, and regulatory reporting.

Batch systems are known for efficiently handling large data volumes by grouping similar jobs,

significantly reducing resource utilization and improving overall system performance.

IBM's z/OS has been an industry leader in robust and efficient batch processing for a long time and is

known for its exceptional scalability, security, reliability, and data integrity. Its design optimally

supports batch execution by efficiently managing workload distribution, scheduling, and resource

allocation.

Technological advancements have increased interest in organizations adopting and integrating modern

programming languages such as Java. Java, known for its portability, robust standard libraries, powerful

frameworks, and developer productivity, provides a substantial pathway toward modernization. By

leveraging Java, organizations can carefully and gradually modernize legacy applications, utilize

distributed computing principles, and accelerate integration with modern platforms and technologies.

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 2

IBM recognized the growing need for Java on z/OS and significantly invested in seamless integration.

Innovations like the IBM J9 JVM optimized specifically for z/OS, Java SDK tools, and interoperability

with traditional languages like COBOL and HLASM enable developers to create and manage batch

applications more effectively.

This paper explores the capabilities of Java on z/OS, providing details on how Java can be efficiently

deployed for batch workloads on z/OS. It also examines Java's integration capabilities with legacy

applications written in COBOL and HLASM languages using Language Environment (LE) and Java

Native Interface (JNI), showcasing practical approaches and real-world scenarios.

This paper also explores various implementation methods of batch processing using Java, including

BPXBATCH, BPXATSL, JZOS Batch Launcher, WebSphere Liberty Profile, and WebSphere Compute

Grid. The paper also thoroughly reviews performance considerations and common challenges

encountered during Java batch implementation, providing clear guidance to practitioners navigating the

modernization journey.

1. Why Java for Batch Processing on z/OS

While traditional mainframe languages such as COBOL and High-Level Assembler (HLASM) have

efficiently handled batch workloads for decades, they often lack the agility, developer productivity, and

extensive ecosystem associated with modern programming languages like Java.[1] Transitioning batch

applications to Java on z/OS brings numerous compelling advantages, including:

• Developer Productivity and Ease of Use:

Java is an object-oriented, platform-independent language widely adopted globally, making it

easier for enterprises to find skilled resources. Its readability, structured approach, and strong

typing contribute to fewer coding errors, quicker development cycles, and simplified

maintenance. [5]

• Portability and Integration:

Java’s "write once, run anywhere" capability significantly reduces vendor lock-in and increases

application flexibility. Java-based applications developed for distributed systems can now

seamlessly migrate or interoperate with z/OS environments, bridging gaps between legacy and

modern infrastructures. [2]

• Rich Standard Libraries and Frameworks:

Java offers a vast ecosystem, including popular frameworks such as Spring and Java EE,

enhancing batch processing capabilities through robust error handling, transaction management,

and comprehensive logging. This allows z/OS batch systems to adopt modern development

practices rapidly. [7][6]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 3

• Improved Scalability and Resource Management:

The IBM J9 JVM, optimized specifically for z/OS, enhances batch execution through efficient

memory management and thread handling, delivering high throughput and low latency required

by enterprise batch workloads. [3]

• Enhanced Security Features:

Java incorporates advanced security mechanisms, including authentication, encryption, and fine-

grained access controls, easily integrating with z/OS's robust security (such as RACF). This

enhances compliance with enterprise security requirements. [4]

• Modernization of Legacy Applications:

Organizations looking to modernize and innovate their legacy mainframe environments benefit

significantly from Java's ability to integrate smoothly with existing COBOL and HLASM

modules. This allows businesses to gradually modernize legacy code without extensive rewrites.

[1]

In summary, adopting Java for batch processing on z/OS merges the reliability and efficiency of

traditional mainframe operations with modern programming capabilities. This approach offers

enterprises an ideal balance—preserving proven infrastructure while enabling innovation and agility

demanded by contemporary business environments. [1]

2. Java Execution on z/OS

Java can be executed in various ways on z/OS, either as stand-alone batch applications or integrated with

traditional languages like COBOL. Understanding these execution methods helps select the optimal

strategy.

2.1. Stand-alone Java Application Execution

Stand-alone Java batch applications on z/OS typically run within the Unix System Services (USS)

environment. USS provides a Unix-like interface, enabling Java to utilize Unix-style paths for accessing

files and resources. Java applications execute within a Java Virtual Machine (JVM), specifically IBM's

J9 JVM, optimized explicitly for z/OS to ensure efficient resource utilization and performance [1].

The JVM operates within an address space managed by z/OS, allocating heap memory dynamically.

IBM's J9 JVM includes advanced garbage collection, just-in-time (JIT) compilation, and monitoring

capabilities designed to optimize application throughput and reduce latency in mainframe environments

[2].

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 4

Figure 1: Illustrating a high-level JZOS stand-alone JVM. [1] TWS represented here is the job

scheduler.

2.2. Java-COBOL Interoperability

Java-COBOL interoperability has significantly improved with IBM's release of COBOL 6.4, introducing

features that simplify calling Java from COBOL and vice versa. COBOL 6.4 enhancements include

easier JVM management, direct Java method invocation, automatic data-type conversion between

COBOL and Java data types, and improved exception handling [8]

This interoperability allows COBOL batch processes to invoke Java routines, benefiting from Java's

capabilities while preserving critical legacy logic. Conversely, Java programs can also invoke COBOL

modules seamlessly, making incremental modernization feasible and less risky.

A typical scenario involves a COBOL batch job that reads data from traditional MVS datasets, processes

complex business logic, and then calls Java for tasks such as formatting data into JSON or XML,

sending messages to distributed platforms, or leveraging third-party libraries for enhanced

functionalities.

3. IBM SDK and JZOS Utilities for Efficient File Operations and Encoding

Managing file operations efficiently and accurately converting data between ASCII, Unicode, and

EBCDIC character sets is critical when running Java batch applications on z/OS. IBM provides

specialized tools within its Java SDK, notably the JZOS toolkit, which significantly simplifies these

operations. [2]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 5

JZOS Toolkit Overview

JZOS (Java for z/OS) is a powerful set of Java classes and utilities provided by IBM, specifically

tailored to enable seamless integration between Java applications and traditional z/OS system services,

including access to MVS. [2] Key features of JZOS include:

• Direct Access to MVS Datasets:

JZOS enables Java applications to directly read from and write to traditional mainframe datasets

(Sequential, VSAM, or PDS) without requiring extensive JNI-based solutions.

• Simplified Character Encoding:

It automatically handles character set conversions between ASCII/Unicode (default Java) and

EBCDIC (standard on z/OS), reducing complexity and potential errors in data encoding and

decoding.

• Integration with JCL and DD Names:

JZOS allows Java batch applications to reference files directly via JCL DD statements, making

Java programs easier to integrate into existing mainframe batch processing systems.

Example: Reading and Writing MVS Datasets Using JZOS

Below is a simplified Java snippet showing the utilization of JZOS for reading and writing records to

traditional mainframe datasets:

import com.ibm.jzos.ZFile;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

public class JZOSBatchExample {

 public static void main(String[] args) {

 try {

 // Reading from input MVS dataset

ZFileinputDataset = new ZFile("//DD:INPUT", "rb,type=record");

BufferedReader reader = new BufferedReader(new InputStreamReader(inputDataset.getInputStream(),

"Cp1047"));

 // Writing to output MVS dataset

ZFileoutputDataset = new ZFile("//DD:OUTPUT", "wb,type=record");

BufferedWriter writer = new BufferedWriter(new

OutputStreamWriter(outputDataset.getOutputStream(), "Cp1047"));

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 6

 String line;

 while ((line = reader.readLine()) != null) {

 String modifiedLine = line.replace("OLDVALUE", "NEWVALUE");

writer.write(modifiedLine);

writer.newLine();

 }

reader.close();

writer.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Corresponding JCL for the above Java program:

//JAVAJOB JOB (),'JAVA BATCH',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//STEP1 EXEC PGM=JVMLDM86,PARM='JZOSBatchExample'

//STEPLIB DD DISP=SHR,DSN=IBM.JZOS.LOADLIB

//INPUT DD DISP=SHR,DSN=MY.INPUT.DATASET

//OUTPUT DD DISP=(NEW,CATLG),DSN=MY.OUTPUT.DATASET,

// SPACE=(CYL,(5,5)),DCB=(RECFM=FB,LRECL=80)

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

By utilizing the JZOS toolkit, Java batch applications achieve higher efficiency, reduce complexity

related to character encoding, and seamlessly integrate into traditional z/OS batch environments. [2]

4. Options for Running Java Batch Applications on z/OS

Java batch workloads on z/OS can be executed using several IBM-provided options, each with unique

capabilities and suitability for different use cases. Below we briefly introduce these options before

diving into detailed sub-sections.

• BPXBATCH: Executes Unix commands and Java programs by creating separate subtasks,

limiting direct access to JCL resources. [4]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 7

• BPXATSL: Similar to BPXBATCH but runs within the same task, offering direct access to JCL

resources like DD statements. [4]

• JZOS Batch Launcher: Specifically designed for Java applications, providing seamless

integration with JCL. [2]

• WebSphere Liberty Profile (WLP): A lightweight application server supporting Java EE

standards, enabling scalable batch job execution and integration with CICS if needed. [10]

• WebSphere Compute Grid: Provides advanced batch workload management and parallel

execution capabilities suited for high-volume batch operations. [1]

Each method is explored in greater detail below with consistent examples demonstrating reading from

input files, modifying records, and writing output files.

4.1. BPXBATCH

BPXBATCH is an IBM utility for executing Unix System Services (USS) commands or scripts from

JCL. It launches these commands as child subtasks, limiting access to the JCL environment, including

dataset allocations made through DD statements. [4]

Use cases: Simple, isolated Java batch jobs without the need for extensive interaction with JCL-defined

datasets.

Java Code Example (BPXBATCH):

import java.nio.file.*;

public class SimpleJavaBatch {

 public static void main(String[] args) throws Exception {

 Path inputPath = Paths.get("/u/data/input.txt");

 Path outputPath = Paths.get("/u/data/output.txt");

Files.write(outputPath,

Files.lines(inputPath)

.map(line ->line.replace("OLD", "NEW"))

.toList());

 }

}

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 8

JCL Example (BPXBATCH):

//JAVAJOB JOB (),'JAVA BPXBATCH',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//JAVAEXEC EXEC PGM=BPXBATCH,

// PARM='SH java -jar /u/apps/simplebatch.jar'

//STDOUT DD PATH='/u/logs/output.log',

// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=(SIRUSR,SIWUSR)

//STDERR DD SYSOUT=*

Environment Config (if needed) - Will be included as part of STDENV file.

JAVA_HOME=/usr/lpp/java/J8.0

CLASSPATH=/u/apps/simplebatch.jar

4.2. BPXATSL

BPXATSL is another IBM utility for executing USS-based programs and scripts directly from JCL, but

unlike BPXBATCH, it runs commands within the same task, allowing direct and seamless access to

JCL-defined resources, such as DD names and datasets. [4] This capability is crucial for batch

applications that need direct integration with existing JCL-managed resources.

Use Cases:

Ideal for batch applications requiring integration with traditional JCL dataset allocations without the

overhead of spawning a separate child task, such as legacy batch jobs migrating incrementally to Java-

based implementations.

Java Code Example (BPXATSL):

Here’s an example of Java code that reads from a JCL-defined input file, modifies each record, and

writes the results directly to an output file defined in JCL:

import com.ibm.jzos.ZFile;

import java.io.*;

public class BPXATSLJavaBatch {

 public static void main(String[] args) throws Exception {

BufferedReader reader = new BufferedReader(

 new InputStreamReader(new ZFile(\"//DD:INPUT\", \"rb,type=record\").getInputStream(),

\"Cp1047\"));

BufferedWriter writer = new BufferedWriter(

 new OutputStreamWriter(new ZFile(\"//DD:OUTPUT\", \"wb,type=record\").getOutputStream(),

\"Cp1047\"));

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 9

 String line;

 while ((line = reader.readLine()) != null) {

 String updatedLine = line.replace(\"OLD\", \"NEW\");

writer.write(updatedLine);

writer.newLine();

 }

reader.close();

writer.close();

 }

}

JCL Example (BPXATSL):

//JAVAJOB JOB (),'JAVA BPXATSL',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//JAVAEXEC EXEC PGM=BPXATSL,PARM='PGM /usr/lpp/java/J8.0/bin/java BPXATSLJavaBatch'

//STDENV DD *

JAVA_HOME=/usr/lpp/java/J8.0

CLASSPATH=/u/apps/bpxatslbatch.jar

/*

//INPUT DD DISP=SHR,DSN=MY.INPUT.DATASET

//OUTPUT DD DISP=(NEW,CATLG),DSN=MY.OUTPUT.DATASET,

// SPACE=(CYL,(5,5)),DCB=(RECFM=FB,LRECL=80)

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

Key Benefits:

• Direct JCL integration allows leveraging existing mainframe datasets.

• Simplified application migration path from legacy batch applications.

• Lower resource consumption due to no extra child task spawning overhead.

Considerations:

• Limited error isolation compared to BPXBATCH; since it runs in the same task, severe errors

might impact the job directly.

BPXATSL serves as an efficient alternative when deeper integration between Java applications and

traditional z/OS batch systems is required, especially in scenarios involving incremental modernization

and leveraging existing mainframe resources. [4]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 10

4.3. JZOS Batch Launcher

The JZOS Batch Launcher is specifically designed by IBM for launching Java applications directly from

JCL, providing extensive integration with traditional z/OS resources, such as DD statements and MVS

datasets. [2] Unlike BPXBATCH or BPXATSL, JZOS is built explicitly for Java batch execution,

facilitating seamless and efficient integration into legacy batch environments.

Use Cases:

JZOS is ideal for batch applications transitioning from COBOL or HLASM to Java that require direct

access to mainframe datasets and existing JCL job management infrastructure.

Java Example (JZOS Batch Launcher):

Here’s a detailed example showing how a Java application can directly access, and process datasets

allocated via JCL DD statements:

import com.ibm.jzos.ZFile;

import java.io.*;

public class JZOSBatchApp {

 public static void main(String[] args) {

 try {

BufferedReader reader = new BufferedReader(

 new InputStreamReader(new ZFile("//DD:INPUT", "rb,type=record").getInputStream(),

"Cp1047"));

BufferedWriter writer = new BufferedWriter(

 new OutputStreamWriter(new ZFile("//DD:OUTPUT", "wb,type=record").getOutputStream(),

"Cp1047"));

 String line;

 while ((line = reader.readLine()) != null) {

 String modifiedLine = line.replace("OLDVALUE", "NEWVALUE");

writer.write(modifiedLine);

writer.newLine();

 }

reader.close();

writer.close();

 } catch (IOException e) {

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 11

e.printStackTrace();

 }

 }

}

JCL Example (JZOS Batch Launcher):

//JAVAJOB JOB (),'JAVA JZOS',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//JAVAEXEC EXEC PGM=JVMLDM86,PARM='JZOSBatchApp'

//STEPLIB DD DISP=SHR,DSN=IBM.JZOS.LOADLIB

//INPUT DD DISP=SHR,DSN=MY.INPUT.DATASET

//OUTPUT DD DISP=(NEW,CATLG),DSN=MY.OUTPUT.DATASET,

// SPACE=(CYL,(5,5)),DCB=(RECFM=FB,LRECL=80)

//STDENV DD *

JAVA_HOME=/usr/lpp/java/J8.0

CLASSPATH=/u/apps/jzosbatchapp.jar

/*

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

Environment Configuration (STDENV): The STDENV DD specifies environment variables essential

for Java execution, including JVM settings, classpath, and JVM arguments.

Key Benefits:

• Tight integration with traditional mainframe batch infrastructure.

• Automatic handling of character encoding between Java and EBCDIC.

• Simplifies access to JCL-managed datasets via DD statements.

• Efficiently manages resources specific to z/OS workloads.

Considerations:

• Designed exclusively for Java batch workloads; not suitable for executing non-Java applications

or generic shell scripts.

In summary, JZOS Batch Launcher significantly simplifies Java integration into z/OS batch

environments, making it the preferred method for Java batch applications that need robust mainframe

integration capabilities. [2]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 12

4.4. WebSphere Liberty Profile

The WebSphere Liberty Profile (WLP) is a lightweight, modular application server from IBM,

supporting Java EE and optimized for rapid startup and efficient resource utilization. Liberty Profile

provides robust support for Java batch applications through the JSR 352 (Java Batch) framework,

allowing organizations to implement modern batch processing within an enterprise-grade Java

environment on z/OS. [10]

Use Cases:

Liberty is well-suited for batch applications requiring advanced Java EE capabilities, such as transaction

management, scalability, and integration with web services or distributed applications. It can also run

within CICS environments, enabling batch processes closely integrated with transactional workloads.

Java Example (JSR 352 Batch Job with Liberty Profile):

Batchlet Java class (ModifyRecordsBatchlet.java):

import javax.batch.api.AbstractBatchlet;

import java.nio.file.*;

public class ModifyRecordsBatchlet extends AbstractBatchlet {

 @Override

 public String process() throws Exception {

 Path inputPath = Paths.get("/u/data/inputfile");

 Path outputPath = Paths.get("/u/data/outputfile");

Files.write(outputPath,

Files.lines(inputPath)

.map(line ->line.replace("OLD", "NEW"))

.toList());

 return "COMPLETED";

 }

}

Batch Job XML (modifyrecords-job.xml):

<job id="modifyRecordsJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

<step id="modifyRecordsStep">

<batchlet ref="ModifyRecordsBatchlet"/>

</step>

</job>

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 13

Liberty Server Configuration (server.xml):

<featureManager>

<feature>batch-1.0</feature>

</featureManager>

<batchExecutorbatchExecutorRef="defaultExecutor"/>

<executor id="defaultExecutor" coreThreads="5" maxThreads="10"/>

Job Submission via JCL (Using BPXBATCH to trigger REST API):

//JAVAJOB JOB (),'LIBERTY BATCH',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//STEP1 EXEC PGM=BPXBATCH,

// PARM='SH curl -X POST http://liberty-host:9080/ibm/api/batch/job/modifyRecordsJob'

//STDOUT DD PATH='/u/logs/batchoutput.log',

// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=(SIRUSR,SIWUSR)

//STDERR DD SYSOUT=*

Key Benefits:

• Full support for Java EE batch standards (JSR 352), offering checkpoint and restart, robust error

handling, and transactional control.

• Easily scalable, suitable for enterprise-level workloads.

• Integration with distributed web services and CICS transactions if needed.

Considerations:

• Requires Liberty environment setup, potentially increasing initial complexity.

• Slightly higher resource footprint compared to lighter utilities like JZOS or BPXATSL.

In summary, WebSphere Liberty Profile is ideal for organizations requiring modern Java EE batch

execution with advanced transaction management and scalable enterprise-grade features. [10]

4.5. WebSphere Compute Grid

IBM WebSphere Compute Grid is a robust and scalable batch execution platform designed for managing

and distributing Java-based batch workloads across multiple compute nodes. It provides powerful

scheduling, resource management, and parallel processing capabilities, making it ideal for complex,

large-scale batch processing tasks on z/OS. [1]

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 14

Use Cases:

Compute Grid is particularly suited for large enterprise environments requiring high-volume batch

processing, parallel execution, workload balancing, and efficient job management across multiple

servers or processors.

Java Example (Compute Grid Batch Job):

Below is a conceptual Java example demonstrating simple batch processing logic suitable for Compute

Grid deployment, utilizing the JSR 352 batch framework:

Batch Job XML (gridBatch-job.xml):

<job id="computeGridBatchJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

<step id="modifyGridRecords">

<chunk item-count="100">

<reader ref="fileItemReader"/>

<processor ref="recordProcessor"/>

<writer ref="fileItemWriter"/>

</chunk>

</step>

</job>

Java Components:

FileItemReader.java:

import javax.batch.api.chunk.AbstractItemReader;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.Iterator;

import java.util.List;

public class FileItemReader extends AbstractItemReader {

 private Iterator<String>iterator;

 @Override

 public void open(Serializable checkpoint) throws Exception {

 List<String> lines = Files.readAllLines(Paths.get("/u/data/inputfile"));

 iterator = lines.iterator();

 }

 @Override

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 15

 public String readItem() throws Exception {

 return iterator.hasNext() ? iterator.next() : null;

 }

}

RecordProcessor.java:

import javax.batch.api.chunk.ItemProcessor;

public class RecordProcessor implements ItemProcessor {

 @Override

 public String processItem(Object item) {

 return ((String)item).replace("OLD", "NEW");

 }

}

FileItemWriter.java:

import javax.batch.api.chunk.AbstractItemWriter;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.List;

public class FileItemWriter extends AbstractItemWriter {

 @Override

 public void writeItems(List<Object> items) throws Exception {

Files.write(Paths.get("/u/data/outputfile"), (List<String>)(List<?>)items);

 }

}

WebSphere Compute Grid Job Submission:

Batch jobs in Compute Grid are typically submitted and managed through administrative tools or via

APIs for automated job scheduling and workload distribution.

Key Benefits:

• Highly scalable and capable of parallel execution across multiple compute nodes.

• Advanced scheduling, checkpoint/restart capabilities, and automated resource balancing.

• Supports enterprise-grade reliability and transactional integrity.

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 16

Considerations:

• Higher complexity in initial setup and configuration compared to simpler methods like

BPXBATCH or JZOS.

• Intended for extensive batch workloads that require advanced management and scalability

features.

WebSphere Compute Grid significantly improves batch processing efficiency, scalability, and reliability

for enterprises dealing with complex, high-volume batch scenarios, making it an optimal choice for

rigorous operational demands on z/OS. [1]

4.6. Comparison Table of Java Batch Execution Options on z/OS

The following table provides a concise comparative overview of each Java batch execution option

available on z/OS, summarizing key aspects such as JCL integration, resource usage, complexity,

scalability, and recommended use cases.

Aspect BPXBATCH

[4]

BPXATSL [4] JZOS [2] Liberty [10] Compute Grid

[1]

JCL Integration Limited Direct Direct Moderate (REST

API)

Moderate (API &

UI)

Access to JCL

Resources

No (child task) Yes (same task) Yes (direct) Moderate (via

config)

Moderate (via

config)

Resource

Consumption

Low Low Low Moderate High

Scalability Moderate Moderate High High Very High

Complexity

(Setup & Admin)

Low Low Low Moderate High

Checkpoint &

Restart

No No No Yes (JSR 352) Yes (advanced)

Transaction

Management

No No Basic Advanced (Java

EE)

Advanced

Parallel

Execution

No No No Moderate Advanced

Ideal Use Case Simple isolated

batch tasks

Legacy JCL

batch

integration

JCL-heavy

batch with

datasets

Java EE Batch

with enterprise

integration

High-volume

distributed batch

processing

This table aims to assist practitioners in quickly identifying the most suitable Java batch execution

method based on their specific operational requirements and infrastructure capabilities.

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 17

5. JSR 352 for Batch Jobs

JSR 352, also known as the Batch Applications for the Java Platform specification, is a Java EE standard

specifically designed to provide a consistent programming model for batch processing. [11] It simplifies

batch application development, management, and operation across different Java EE environments,

including IBM z/OS.

Core Components of JSR 352

JSR 352 specifies several core components essential for batch processing:

• Job Definition: Defined using XML, this describes the steps, their sequence, and flow logic of

batch jobs.

• Batchlet: Performs single, atomic tasks as a step within the job.

• Chunk Processing: Includes item readers, processors, and writers to efficiently handle large

datasets by breaking data into manageable chunks.

• Checkpoint and Restart: Provides built-in capabilities for handling failures, enabling batch jobs

to resume from a known-good checkpoint.

• Listeners: Used to intercept batch lifecycle events, allowing custom logic at key execution

points.

Example: Simple Batchlet and Job XML

Java Batchlet Example (SimpleBatchlet.java):

import javax.batch.api.AbstractBatchlet;

public class SimpleBatchlet extends AbstractBatchlet {

 @Override

 public String process() throws Exception {

 // Implement task logic here

System.out.println(\"Executing Batchlet Task\");

 return \"COMPLETED\";

 }

}

Batch Job XML (simplebatchlet-job.xml):

<job id=\"simpleBatchletJob\" xmlns=\"http://xmlns.jcp.org/xml/ns/javaee\" version=\"1.0\">

<step id=\"batchletStep\">

<batchlet ref=\"SimpleBatchlet\"/>

</step>

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 18

</job>

JSR 352 Implementation Options

JSR 352 can be implemented through frameworks such as:

• WebSphere Liberty Profile: Full Java EE compliance and easy integration with modern

enterprise infrastructures.

• Spring Batch: Popular for its ease of use, flexibility, and integration within Spring's extensive

ecosystem.

Benefits of JSR 352

• Standardization: Offers a vendor-neutral batch processing standard across Java EE platforms.

• Efficiency: Built-in batch features streamline processing and management.

• Robustness: Features like checkpoint/restart enhance reliability and error recovery capabilities.

In summary, JSR 352 significantly simplifies Java batch application development on z/OS, offering

standardized approaches, built-in management capabilities, and flexibility in choosing implementation

frameworks. [11]

6. Java Interoperability with COBOL and HLASM via LE and JNI

Language Environment (LE) on z/OS provides a unified runtime for various programming languages,

including Java, COBOL, and High-Level Assembler (HLASM). LE enables interoperability by

facilitating program management, execution context, and common runtime services, allowing seamless

communication between Java and traditional mainframe languages. [8]

Java Native Interface (JNI) further complements LE by providing standardized mechanisms to invoke

native methods written in COBOL or HLASM directly from Java and vice versa. JNI handles data type

conversions, calling conventions, and interaction patterns. [12]

Example: Calling COBOL from Java using JNI

• Define Java method with native keyword:

public class CobolInterop {

 static {

System.loadLibrary("CobolModule");

 }

 public native void invokeCobol(String data);

}

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 19

• Corresponding COBOL code (COBOL 6.4 or higher):

IDENTIFICATION DIVISION.

PROGRAM-ID. CobolModule.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 input-data PIC X(100).

PROCEDURE DIVISION USING input-data.

 DISPLAY 'Received from Java: ' input-data.

 GOBACK.

This interoperability model provides flexibility, allowing legacy COBOL or HLASM modules to be

seamlessly integrated and modernized incrementally with Java. [8]

7. Performance Considerations for Java Batch on z/OS

Optimal Java batch performance on z/OS depends on carefully managing JVM resources, including heap

memory, garbage collection, and I/O operations. Performance optimization recommendations include [3]

• JVM Tuning: Adjust heap size parameters (-Xms, -Xmx), garbage collector algorithms, and JIT

compiler settings specific to batch workloads.

• Efficient I/O Handling: Utilize buffered and sequential access patterns for dataset operations,

minimizing costly I/O operations.

• Thread Management: Balance thread pools to maximize throughput without exhausting system

resources, especially when parallel processing.

• Monitoring and Profiling: Regularly utilize IBM-provided monitoring tools (such as IBM

Health Center) to identify bottlenecks and tune performance proactively.

Proper performance tuning ensures batch applications fully leverage z/OS's processing capabilities,

reducing runtime, and improving system resource utilization.

8. Common Challenges in Running Java Batches on z/OS

Several challenges may arise when running Java batch applications on z/OS, including:

• Character Encoding (ASCII/Unicode vs. EBCDIC): Java’s native ASCII/Unicode character

handling contrasts with z/OS’s EBCDIC encoding, necessitating explicit conversions using JZOS

toolkit or specific Java charset definitions (Cp1047). [2]

• File Pathing Differences: Java uses Unix-like file paths within USS, while legacy applications

use MVS datasets. Bridging this difference requires tools like JZOS or BPXATSL integration.

• Resource and JVM Management: Long-running Java batch processes must be monitored

carefully to prevent heap exhaustion and to maintain optimal garbage collection cycles.

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 20

• Security Integration: Java batch applications must integrate correctly with RACF (Resource

Access Control Facility) to ensure secure and compliant operation within the mainframe security

framework.

Addressing these challenges proactively through comprehensive testing, appropriate tool selection, and

rigorous monitoring strategies helps mitigate risks associated with Java batch execution on z/OS.

Conclusion

Running Java batch workloads on IBM z/OS combines traditional mainframe reliability, scalability, and

security with modern programming advantages, including portability, productivity, and integration with

contemporary distributed technologies. Java batch processing options, including BPXBATCH,

BPXATSL, JZOS Batch Launcher, WebSphere Liberty Profile, and WebSphere Compute Grid, offer

organizations flexible choices suited to various operational requirements and modernization paths.

Understanding interoperability provided by LE and JNI facilitates incremental modernization of legacy

COBOL and HLASM applications. However, achieving optimal performance and successfully

navigating common challenges like encoding conversions, file handling, and resource management are

essential for effectively leveraging Java's capabilities.

In conclusion, strategic adoption of Java batch processing on z/OS enables organizations to significantly

modernize traditional mainframe applications, improving agility, integration capability, and long-term

system viability.

References

[1] IBM, "Batch Modernization on z/OS", IBM Redbooks, July 2012. [Online]. Available:

https://www.redbooks.ibm.com/redbooks/pdfs/sg247779.pdf. [Accessed: August 2023].

[2] IBM, "IBM SDK, Java Technology Edition documentation", IBM Documentation. [Online].

Available: https://www.ibm.com/docs/en/sdk-java-technology. [Accessed: August 2023].

[3] IBM, "Eclipse OpenJ9", IBM Documentation. [Online]. Available:

https://www.eclipse.org/openj9/docs/. [Accessed: August 2023].

[4] IBM, "z/OS V2R4 Documentation", IBM Documentation, January 2023. [Online]. Available:

https://www.ibm.com/docs/en/zos/2.4.0. [Accessed: August 2023].

[5] Oracle, "The Java Tutorials", Oracle Documentation. [Online]. Available:

https://docs.oracle.com/javase/tutorial/. [Accessed: August 2023].

[6] Oracle, "Java EE 7 Specification (JSR-342)", Oracle Documentation, 2013. [Online]. Available:

https://jcp.org/en/jsr/detail?id=342. [Accessed: August 2023].

[7] Oracle, "Spring Batch Reference Documentation", Spring Documentation. [Online]. Available:

https://docs.spring.io/spring-batch/docs/current/reference/html/index.html. [Accessed: August 2023].

https://www.ijlrp.com/

International Journal Research of Leading Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23081485 Volume 4, Issue 8, August 2023 21

[8] IBM, "Enterprise COBOL for z/OS 6.4", IBM Documentation. [Online]. Available:

https://www.ibm.com/docs/en/cobol-zos/6.4. [Accessed: August 2023].

[9] IBM, "New Ways of Running IBM z/OS Batch Applications", IBM Redbooks, May 2013. [Online].

Available: https://www.redbooks.ibm.com/abstracts/sg248116.html. [Accessed: August 2023].

[10] IBM, "WebSphere Application Server Liberty", IBM Documentation. [Online]. Available:

https://www.ibm.com/docs/en/was-liberty/base. [Accessed: August 2023].

[11] Oracle, "JSR 352 Batch Applications for the Java Platform", Java Community Process

Specifications, May 2013. [Online]. Available:

https://jcp.org/aboutJava/communityprocess/final/jsr352/index.html. [Accessed: August 2023].

[12] Oracle, "Java Native Interface Specification", Oracle Documentation. [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html. [Accessed: August 2023].

https://www.ijlrp.com/

