

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 1

Event Driven Architecture for a Health Sciences

Customer Using Kafka and Java Microservice

Sandeep Katiyar

cloudsandeepk@gmail.com

Abstract:

With increasing demand for Data-Driven Applications in the Health Sciences sector, the use of Event

Driven Architectures (EDAs) has become much more popular when creating scalable, responsive, and

reliable systems. In the Health Sciences sector there are many challenges associated with data

management; i.e. managing large volumes of data from various different data sources, while at the same

time maintaining high levels of dependability, interoperability and regulatory compliance. This whitepaper

will outline the design, development, and assessment of a production grade EDA that uses Apache Kafka

as its main event streaming platform and Java-based micro services as its distributed application layer.

The major goal of this project was to demonstrate how an EDAs, specifically one centered on Kafka, could

assist in solving many of the inherent limitations of many synchronous, tightly-coupled architectures

commonly used in Health Sciences Information Systems. In the proposed architecture, all interactions

between applications in the Health Sciences domain are treated as immutable events that are posted to

Kafka topics which enables asynchronous communication between independently-deployable Java-based

micro-services. Several of the key architectural components of this solution include: Topic Partitioning to

enable horizontal scaling, Schema Governance to ensure both data integrity and backward compatibility,

Idempotent Event Handling to prevent duplicate event delivery, and an Integrated Observability Tool Set

to provide full visibility into the operation and governance of the entire system. The results of the

assessments clearly demonstrated that the overall responsiveness of the system, fault tolerance and

scalability of the system were significantly improved over previous architecture implementations, and

provided several benefits including: a significantly lower end-to-end processing latency than previous

architecture implementations, essentially zero downtime during component failure, and a linear increase

in system performance as the volume of events increases. Overall, the results clearly demonstrated that

the utilization of an EDA developed using Apache Kafka and Java MicroServices provides a solid and

adaptable foundation upon which Next Generation Health Sciences platforms can be designed and

implemented to support real-time workflow execution, seamless system evolution, and long-term

architectural sustainability.

Keywords: Event Driven Architecture (EDA), Apache Kafka, Java Microservices, Healthcare

Information Systems, Distributed Systems, Real-Time Data Processing, Fault-Tolerant Architectures,

Healthcare Interoperability.

I.INTRODUCTION:

Healthcare systems in the Health Sciences area are undergoing a rapid shift towards digitally transforming

their processes and creating large-scale information systems that generate and use an abundance of

different types of data. Synchronization between various types of information systems such as Electronic

Health Records (EHR), Laboratory and Imaging Systems, Medical Devices, Scheduling Applications,

Billing Platforms, etc., is critical to provide continuity in clinical care, research, regulatory compliance,

and operational efficiency. An important engineering challenge exists when developing these data

exchanges due to scalability, reliability and responsiveness of the data exchanges because any delay or

failure will have a direct and immediate negative effect on patient safety and quality of care.

https://www.ijlrp.com/
mailto:cloudsandeepk@gmail.com

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 2

Healthcare Information Systems traditionally rely on monolithic architecture or tightly-coupled,

synchronized integration patterns. Although monolithic and tightly-coupled integration patterns may be

acceptable in relatively static environments, they quickly deteriorate as data volumes grow and the number

of dependencies increases between systems. Tight coupling limits the ability of individual systems to

evolve independently, creates complexity in maintaining systems, and amplifies the consequences of

system failures all of which are particularly disconcerting in healthcare environments where high-

availability and resiliency are paramount.

Event-driven Architecture (EDA) represents a viable alternative to traditional tightly-coupled integration

patterns, as it facilitates asynchronous, loosely-coupled communication through the exchange of

immutable events. In EDA, systems respond to events rather than invoke each other directly, allowing

individual components to scale independently and continue to function even when partial system failures

occur. The characteristics of EDA are well-suited to the requirements of modern healthcare platforms,

including: real-time responsiveness; interoperability across multiple disparate systems; and adaptability

to evolving clinical workflows.

Apache Kafka is a popular platform for implementing EDA at scale, providing durable, high-throughput

event-streaming services and strong assurances related to fault-tolerance. When combined with Java-based

microservices engineered for modularity, independent deployments, and enterprise-grade reliability,

Kafka enables the creation of flexible healthcare platforms capable of processing continuous streams of

events in real-time, while also providing mechanisms for governance, auditing, and evolving the

underlying system infrastructure.

The objective of this study is to document and evaluate a production-ready Event Driven Architecture

implemented using Apache Kafka and Java microservices for a Health Sciences client. Specifically, this

study aims to:

(i) provide context for the architectural challenges experienced by modern healthcare systems

(ii) describe the design principles and implementation strategies employed in the proposed solution

(iii) assess the operational benefits and drawbacks of the proposed solution based on experience from

actual deployments.

Fig. 1 Event driven architecture depicting healthcare data producers

II.BACKGROUND

A. Apache Kafka

Apache Kafka is a distributed platform for event streaming, designed to enable large-scale, high-speed,

and highly available data exchange between different distributed systems. Kafka uses a publish/subscribe

model to manage data exchanges. A producer will send messages to specific topics that have been divided

into partitions to support concurrent processing of those messages. Consumers will then subscribe to

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 3

specific topics and process those messages in real-time. As a result, this design facilitates high levels of

decoupling between data producers and consumers, which is critical to build both scalable and fault-

tolerant applications.

One of the most important characteristics of Kafka is the ability to store data persistently in a log-based

format. Unlike many traditional message queues that store messages until they are consumed by a

consumer, Kafka stores messages in a log-based format until it reaches a predetermined time frame, based

on the producer's configuration. Once a producer has configured the amount of time that it wishes to retain

messages, messages will be stored in the log until that time period expires. Thereafter, the messages can

be deleted from the log. The persistent nature of storing messages in the log provides several benefits to

consumers including being able to replay previous messages that were processed by a consumer;

recovering from previous errors by replaying messages previously processed by a consumer; and

supporting downstream functions such as audit logs, compliance reports, and retrospective analytics. In

the health care industry where traceability and data lineage are paramount to meeting regulatory guidelines

and providing clinical accountability, the ability to store messages persistently does offer a number of

architectural advantages.

Kafka is also designed to operate at very high levels of availability and scale horizontally. Topic-

partitioning allows workload to be distributed among a group of brokers, while replication ensures that if

a broker fails, the data will still remain available to consumers. Leader-follower replication provides Kafka

clusters with the capability to continue to provide services and maintain data integrity even when some

portion of the cluster is unavailable due to failure. Due to its ability to process very high volumes of

continuous data, coming from a variety of data producing sources (i.e., Electronic Health Records,

Laboratory Instruments, Imaging Devices, Medical Devices), Kafka is well-suited for use within

healthcare environments that require the processing of continuous data flows.

In addition to providing basic messaging capabilities, Kafka-based ecosystems typically include a range

of additional components and tools to manage schemas and govern how messages are serialized and

deserialized between producers and consumers. Schema registries and serialization frameworks are two

common types of tools used to ensure that there is a consistent contract for exchanging data between

producers and consumers. Additionally, these tools help support the evolutionary development of schemas

over time and reduce the likelihood of integration-related issues. In the health sciences environment, where

the need for interoperability between clinical and operational systems is high, these governance

capabilities are essential to maintaining the quality of data exchanged and sustaining the overall viability

of systems over extended periods of time.

B. Java Microservices

The use of java-based micro-services represents an architectural style that has many characteristics of a

distributed environment; however, instead of having monolithic applications; it has multiple small services

that perform different types of business functions.

Within health care organizations, there is typically a direct relationship between the type of event being

processed (i.e., a patient's information) and the type of business responsibility associated with the event.

For example, micro-services may be used to manage lab results, schedule appointments, and manage

billing. As a result of breaking down these separate business functions into discrete services, dependencies

across the entire system can be minimized allowing for services to be developed independently and

deployed and scaled separately.

Both Spring Boot and Quarkus provide a solid base from which java-based micro-services can be built in

corporate settings; both have similar goals and philosophies as well as similar features that support rapid

application development through pre-defined configurations, embedded runtime containers and first-class

support for message and stream-based platforms. Additionally, they both have a wide range of integration

points with other frameworks that are important for building mission-critical health-care based

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 4

applications including but not limited to, security, configuration, observability and testing frameworks

that meet the very strict regulations and operational needs of the health-care industry.

Operational characteristics of java-based micro-services also have a number of similarities to cloud-native

and DevOps principles; specifically, their light-weight nature makes them ideal candidates for

containerization; while the ability to dynamically scale, monitor health, and manage the lifecycle of each

micro-service provides a highly scalable and highly available environment for deploying services.

Furthermore, using independent deployment pipelines for each service allows for the ability to deploy

services one at a time or in a group when desired, therefore reducing downtime and increasing overall

reliability of services.

When combined with an event-driven platform such as Apache Kafka, java-based micro-services can act

as reactive elements that process and produce events on an asynchronous basis. The communication

pattern between services eliminates the possibility of temporal coupling between services; and by doing

so reduces the likelihood of cascading failures; and allows each service to scale independently of other

services in order to handle workload as necessary. Ultimately, the combination of event-driven

communications and independent scalability of micro-services enables real-time management of clinical

and operational events in the health-care industry while providing the flexibility to include new workflows,

data sources, and analytical capabilities as needed.

Fig 2. Java Microservices in an event driven system

III.ARCHITECTURE OVERVIEW

This method is an entirely event driven architecture (EDA). It utilizes an apache kafka cluster as the core

event bus, providing scalable, asynchronous, and fault-tolerant integration of various healthcare

information systems. Every major change of state throughout the healthcare environment is captured and

sent through the event bus. The events consist of a wide variety of clinical and operational activities

including changes to patient demographics, test results and lab reports, telemetry from medical devices,

billing alerts, and appointment scheduling and coordination. The events themselves become the

fundamental building blocks of the system architecture, facilitating the real-time exchange of data while

also decreasing both temporal and structural dependencies between applications and services.

To further support the EDA architecture model, it is divided into two primary tiers; the infrastructure tier

and the application tier. The Kafka cluster serves as the core event bus, the Java-based microservices

function as the domain specific event processors, and the cross-cutting services function as the schema

governance and operational monitoring services. This compartmentalization provides a level of

independence to the development of individual components, allows for incremental improvement of the

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 5

overall system, and reduces the risk to the rapidly evolving healthcare environment when making

modifications to the system.

A. Kafka Cluster and Event Bus

At the core of the architecture is a multi-node Apache Kafka cluster designed to provide a highly available,

fault-tolerant, and horizontally scalable solution for the storage and delivery of events. Healthcare

information systems produce events to Kafka topics which are then stored in multiple replicates of the

same partition that are distributed across the multiple nodes of the Kafka cluster. Replication within Kafka

ensures that no matter what happens to a node or its connectivity to other nodes, there will always be

durable copies of all the data to prevent loss due to failure.

In addition to being a durable system of record for healthcare events, the use of Kafka provides a

decoupling of event producers from consumers both in time and operationally. Producers of events do not

need to know anything about how their events are processed downstream and do not have to wait for those

events to be processed. Consumers of events can independently subscribe to topics they are interested in

and can choose to process those events at a time that suits them best. This decoupling is especially

important in a healthcare environment, because when some downstream systems may require downtime,

scalability adjustments, or experience partial outages, they should not negatively impact the ability of

upstream clinical processes to continue uninterrupted.

B. Kafka Topics and Domain-Oriented Event Partitioning

Events generated by healthcare information systems are organized into Kafka topics based upon domain-

driven and functional boundaries, which reflect important business concepts rather than arbitrary technical

limitations. Examples of these types of topics include events related to patients, events related to laboratory

and diagnostic results, streams of events related to medical device data, financial alert events, and

scheduling-related events. Organizing events around domain-oriented boundaries increases clarity and

understanding, improves access control, and enables individual event streams to scale in response to

demand.

Techniques used to partition events in Kafka are carefully selected to optimize throughput, scalability, and

compliance with ordering constraints. For example, for workflows requiring sequential processing, such

as handling patient-centric events, events are assigned to Kafka partitions using stable identifiers so that

they can be consumed in order, but still allow for parallel processing of different entities. This allows for

maintaining correct behavior without sacrificing performance.

C. Java-Based Microservices as Event Processors

Java-based microservices represent the event processor layer of the architecture. Each microservice

consumes events from one or more Kafka topics, applies domain-specific business rules to determine how

to process the events, stores the results in appropriate data sources, and generates additional events to

signal subsequent actions or states of the entity represented by the original event. When possible,

microservices are implemented to be stateless, which provides flexibility in deployment and simplifies

recovery from failures.

Because microservices consume events asynchronously, the slow or non-responsive status of a

downstream service cannot impede the processing of events by an upstream service, thus preventing the

occurrence of cascading failures. Additionally, this design aligns well with the needs of the healthcare

environment where the continuous processing of large volumes of data streams is crucial.

IV.IMPLEMENTATION DETAILS

This section will describe how the proposed event-driven architecture will be executed; specifically, how

it can be used to mitigate many of the typical engineering problems found in large-scale health care

systems (i.e., scalability, operational complexity, fault separation, etc.) and provide better data integrity.

A. Kafka Cluster Deployment

To help resolve scalability and availability issues in point-to-point and synchronous messaging systems

that are commonly found in large-scale health care systems, a multi-node Apache Kafka cluster is

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 6

established. Data loss and service disruptions caused by broker failures are resolved through replication

among Kafka brokers. To reduce operational complexity, stream line cluster management, and eliminate

another possible failure point at scale, the setup uses Kafka's ZooKeeper-free KRaft mode.

Through topic partitioning, scalability and performance issues related to throughput limits and the ability

to process events concurrently are also addressed. In this manner, the system does not have a single-

consumer bottleneck, and it provides predictable performance as the volume of events grows.

B. Java Microservices

Healthcare applications typically have tightly coupled, monolithic architectures. To address this issue,

Java microservices are built using Spring Boot and Kafka client libraries. Each service is built to be

stateless and avoid relying on in memory state, so they can be scaled horizontally and recover quickly if

they fail.

Idempotent event handlers were implemented to handle duplicate messages being delivered, a common

problem in distributed event driven systems. This ensures that data integrity remains intact when there is

a need to retry or reprocess messages. Additionally, services interact with both relational and NoSQL

databases to support different patterns of accessing health care data, and the strict separation of the API

layer, business logic layer, and data layer minimize code complexity and improve long term

maintainability.

C. Event Flow Design

The goal of designing the event flow was to remove synchronous dependencies and improve fault

isolation. Upstream systems such as EHR platforms, medical devices, and workflow engines generate

events that are stored by Kafka in replicated partitions to ensure durability. These events are

asynchronously consumed by Java microservices, which perform domain logic and store changes in their

states. Afterward, downstream events are emitted to continue the next set of work flows. This

asynchronous model of executing events ensures that a slow or failing component cannot cause its failures

to be propagated to other parts of the system.

Fig. 3 A sequence diagram showing end to end event flow

D. Operational Management & Observability

Blind spots in operations are addressed through a complete observability stack. Dashboards created with

Prometheus and Grafana provide insight into throughput, consumer lag, and error rates, enabling

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 7

identification of performance degradation before it has an impact. Logging centrally through ELK or

OpenSearch enables rapid determination of the root cause of issues across distributed services.

Schema management is directly responsible for addressing the issue of inconsistent data and integration

vulnerabilities. Schema validation for Avro or JSON schemas enforced by a central schema registry

ensures that producers and consumers adhere to compatible event contracts. The controlled evolution of

the schema eliminates the possibility of breaking changes impacting downstream services, a critical

requirement in health care environments where multiple teams and vendors are integrated.

V. BENEFITS AND CHALLENGES

Implementing an Event-Driven Architecture (EDA) using Apache Kafka as messaging middleware and

Java microservices provides many tangible benefits for healthcare platforms; however, EDA also

introduces engineering challenges that must be properly managed. This section will outline the major

benefits realized during implementation, and highlight some of the major challenges related to event-

driven healthcare systems.

A. Benefits

1. Scalability: The use of Kafka topic partitioning combined with parallel consumption of microservices

enables the system to handle large volumes of high-throughput events with consistent performance. When

data volume grows from clinical systems, devices or operational processes, the scalable nature of the

architecture allows for horizontal scaling by simply adding additional partitions or service instances

without needing to modify the structure of the system.

2. Fault Tolerance: Kafka's replication capabilities provide durable event storage and protection against

data loss when Kafka brokers fail. Additionally, microservices deployed at the application layer run

independent of each other, providing fault isolation and protecting against failure propagation by allowing

for individual microservices to restart or scale without affecting the operation of the rest of the system.

3. Decoupling/Extensibility: Removing point-to-point integrations reduces system coupling and

integration complexity. New producers or consumers can be added to the system without modifying

existing upstream systems by simply subscribing to existing topics, thereby increasing the speed at which

the system evolves and new healthcare applications are integrated.

4. Real-Time Processing: With minimal latency, events flow through the platform and enable near-real

time updates to both clinical and operational workflows. Near-real time updating supports timely decision

making, improves the experience of clinicians, and increases the overall agility of the system.

B. Challenges

1. Message Ordering: Ensuring the correct order of events for patient-centric workflows is a major

challenge. While partitioning strategies may help maintain the order of events for related events, such

partitioning requires careful key design, which may limit parallelism.

2. Duplicate Event Delivery: Due to retry attempts or failures, event-driven architectures may deliver

messages multiple times. Without proper safeguards in place, this could create inconsistent data or require

the repeated processing of the same message.

3. Idempotent Service Design: To address the issue of duplicate deliveries, microservices should

implement idempotent processing logic. However, implementing idempotence across multiple workflows

increases implementation complexity and requires comprehensive testing.

4. Schema Evolution: Data models used in healthcare evolve frequently to reflect changes in clinical

standards or business requirements. Providing backward compatibility for both producers and consumers

in managing schema evolution while maintaining integrity of the data model requires discipline in

governance and versioning practices.

5. Distributed Transaction Coordination: Coordinating multi-step workflows across distributed services

without traditional transactional boundaries creates significant challenges. The eventual consistency and

compensating actions must be carefully designed to ensure accurate results in complex healthcare

processes.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 8

VI. RESULTS AND DISCUSSION

Performance, reliability and adaptability were all improved through an event driven architecture adopted

into the healthcare space. Processing times for the end-to-end ingestion of laboratory test results decreased

by approximately 40% in comparison to the original processing times (testing and production) primarily

because of the high-throughput nature of Kafka's event streaming and the fact that microservices are

consuming events simultaneously.

The system experienced very little downtime during maintenance or when a service failed. The continuous

availability of critical data streams was ensured through Kafka's failover and replication, combined with

the independently restartable and stateless nature of each microservice. Tests to determine scalability of

the system found that throughput increased in a near-linear fashion as volume of events increased; this

was achieved by increasing Kafka partitions and adding microservice instances without changing the

design of the application.

In addition to enhancing performance and reliability, the decoupling of data producer and consumer

through an event driven paradigm also provided greater agility in integrating new data producers and

consumers. By creating new applications using existing event contracts, the necessity to add point-to-point

integration between systems was removed. Overall, these findings support the use of a Kafka-based event-

driven architecture as a solid foundation for building scalable, reliable and adaptable healthcare services.

Metric Pre-EDA

Architecture

Kafka-based EDA Improvement

Lab result processing

latency (avg)

2.5 seconds 1.5 seconds ~40% reduction

System availability 99.5% 99.99% Reduced

downtime

Peak event throughput 12,000 events/sec 19,000 events/sec ~58% increase

Time to onboard new

producer

~3 weeks < 1 week Faster integration

Table 1. Performance Comparison Before and After EDA Adoption

VII.CONCLUSION

The paper shows how using Event-Driven Architecture (EDA) based on Java Microservices and Apache

Kafka creates an integration-friendly, scalable, and maintainable platform for Health Science

organizations working within environments where there is large amounts of data and high time sensitivity.

EDA has proven to provide a viable solution to the problems associated with traditional tightly-coupled

synchronous Healthcare systems by breaking down system components into individual components that

are able to communicate asynchronously, and by allowing interaction between clinical and operational

activities to be represented as a stream of events that cannot be changed. The results have shown a

substantial improvement in all three aspects of system operation - i.e., process efficiency, uptime, and

integration agility, along with the required dependability and reliability needed for successful operation

of a healthcare organization.

In addition to the improved processing speed, system availability, and integration speed, the module-

based, event-based architecture also provides long-term flexibility and adaptability to changes in both

healthcare interoperability standards, regulatory requirements, and new digital health technologies. The

use of well defined event contracts, and independently deployable services allows the platform to easily

modify its behavior in response to new or changing conditions in the healthcare environment, which makes

the architecture a good candidate for providing a stable base for future development of healthcare systems.

https://www.ijlrp.com/

International Journal of Leading Research Publication (IJLRP)

E-ISSN: 2582-8010 ● Website: www.ijlrp.com ● Email: editor@ijlrp.com

IJLRP23121533 Volume 4, Issue 12, December 2023 9

The next phase of development will focus on developing additional analytical and intelligent capabilities

for the platform. Areas of development include incorporating advanced CEP methodologies, utilizing

Kafka Streams and ksqlDB for real-time analytics, automating the process of evolving schemas and

governing processes related to the evolving schema, and developing AI-based anomaly detection

capabilities on the event streams to enable better predictive monitoring, clinical insight, and operational

decision making.

REFERENCES:

1. A. Rezaee, F. Rezvani, and M. H. F. Zarandi, "Big data analytics in healthcare: a systematic

review," Computer Methods and Programs in Biomedicine, vol. 179, p. 104986, 2019. [Online].

Available: https://doi.org/10.1016/j.cmpb.2019.104986

2. S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, "Big data in healthcare: management,

analysis and future prospects," Journal of Big Data, vol. 6, no. 1, pp. 1-25, 2019.

3. A. K. M. B. Haque et al., "Semantic Web in Healthcare: A Systematic Literature Review of

Application, Research Gap, and Future Research Avenues," International Journal of Clinical

Practice, vol. 2022, pp. 1–27, Oct. 2022. [Online]. Available:

https://doi.org/10.1155/2022/6807484

4. D. Bender and K. Sartipi, "HL7 FHIR: An Agile and RESTful approach to healthcare information

exchange," in Proc. 26th IEEE International Symposium on Computer-Based Medical Systems,

2013, pp. 326-331.

5. J. Kreps, N. Narkhede, and J. Rao, "Kafka: A Distributed Messaging System for Log Processing,"

in Proc. 6th International Workshop on Networking and Databases (NetDB), Athens, Greece,

2011, pp. 1-7.

6. G. Shapira, T. Palino, V. Sivaram, and K. Petty, Kafka: The Definitive Guide: Real-Time Data and

Stream Processing at Scale, 2nd ed. Sebastopol, CA, USA: O'Reilly Media, 2021.

7. N. Dragoni et al., "Microservices: yesterday, today, and tomorrow," IEEE Software, vol. 35, no. 3,

pp. 80-87, May/Jun. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8354433

8. C. Richardson, Microservices Patterns: With examples in Java. Shelter Island, NY, USA: Manning

Publications, 2018.

9. S. Newman, Building Microservices: Designing Fine-Grained Systems, 2nd ed. Sebastopol, CA,

USA: O'Reilly Media, 2021.

10. M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,

and Maintainable Systems. Sebastopol, CA, USA: O'Reilly Media, 2017.

11. J. Turnbull, Monitoring with Prometheus. Sebastopol, CA, USA: O'Reilly Media, 2018.

https://www.ijlrp.com/
https://doi.org/10.1016/j.cmpb.2019.104986
https://doi.org/10.1016/j.cmpb.2019.104986
https://doi.org/10.1155/2022/6807484
https://doi.org/10.1155/2022/6807484
https://doi.org/10.1155/2022/6807484
https://ieeexplore.ieee.org/document/8354433
https://ieeexplore.ieee.org/document/8354433

