@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

Event Driven Architecture for a Health Sciences
Customer Using Kafka and Java Microservice

Sandeep Katiyar
cloudsandeepk@gmail.com

Abstract:

With increasing demand for Data-Driven Applications in the Health Sciences sector, the use of Event
Driven Architectures (EDAs) has become much more popular when creating scalable, responsive, and
reliable systems. In the Health Sciences sector there are many challenges associated with data
management; i.e. managing large volumes of data from various different data sources, while at the same
time maintaining high levels of dependability, interoperability and regulatory compliance. This whitepaper
will outline the design, development, and assessment of a production grade EDA that uses Apache Kafka
as its main event streaming platform and Java-based micro services as its distributed application layer.
The major goal of this project was to demonstrate how an EDAs, specifically one centered on Kafka, could
assist in solving many of the inherent limitations of many synchronous, tightly-coupled architectures
commonly used in Health Sciences Information Systems. In the proposed architecture, all interactions
between applications in the Health Sciences domain are treated as immutable events that are posted to
Kafka topics which enables asynchronous communication between independently-deployable Java-based
micro-services. Several of the key architectural components of this solution include: Topic Partitioning to
enable horizontal scaling, Schema Governance to ensure both data integrity and backward compatibility,
Idempotent Event Handling to prevent duplicate event delivery, and an Integrated Observability Tool Set
to provide full visibility into the operation and governance of the entire system. The results of the
assessments clearly demonstrated that the overall responsiveness of the system, fault tolerance and
scalability of the system were significantly improved over previous architecture implementations, and
provided several benefits including: a significantly lower end-to-end processing latency than previous
architecture implementations, essentially zero downtime during component failure, and a linear increase
in system performance as the volume of events increases. Overall, the results clearly demonstrated that
the utilization of an EDA developed using Apache Kafka and Java MicroServices provides a solid and
adaptable foundation upon which Next Generation Health Sciences platforms can be designed and
implemented to support real-time workflow execution, seamless system evolution, and long-term
architectural sustainability.

Keywords: Event Driven Architecture (EDA), Apache Kafka, Java Microservices, Healthcare
Information Systems, Distributed Systems, Real-Time Data Processing, Fault-Tolerant Architectures,
Healthcare Interoperability.

LINTRODUCTION:

Healthcare systems in the Health Sciences area are undergoing a rapid shift towards digitally transforming
their processes and creating large-scale information systems that generate and use an abundance of
different types of data. Synchronization between various types of information systems such as Electronic
Health Records (EHR), Laboratory and Imaging Systems, Medical Devices, Scheduling Applications,
Billing Platforms, etc., is critical to provide continuity in clinical care, research, regulatory compliance,
and operational efficiency. An important engineering challenge exists when developing these data
exchanges due to scalability, reliability and responsiveness of the data exchanges because any delay or
failure will have a direct and immediate negative effect on patient safety and quality of care.

IJLRP23121533 Volume 4, Issue 12, December 2023 1

https://www.ijlrp.com/
mailto:cloudsandeepk@gmail.com

\m\, International Journal of Leading Research Publication (IJLRP)

IJLRP E-ISSN: 2582-8010 e Website: www.ijirp.com e Email: editor@ijlrp.com

Healthcare Information Systems traditionally rely on monolithic architecture or tightly-coupled,
synchronized integration patterns. Although monolithic and tightly-coupled integration patterns may be
acceptable in relatively static environments, they quickly deteriorate as data volumes grow and the number
of dependencies increases between systems. Tight coupling limits the ability of individual systems to
evolve independently, creates complexity in maintaining systems, and amplifies the consequences of
system failures all of which are particularly disconcerting in healthcare environments where high-
availability and resiliency are paramount.

Event-driven Architecture (EDA) represents a viable alternative to traditional tightly-coupled integration
patterns, as it facilitates asynchronous, loosely-coupled communication through the exchange of
immutable events. In EDA, systems respond to events rather than invoke each other directly, allowing
individual components to scale independently and continue to function even when partial system failures
occur. The characteristics of EDA are well-suited to the requirements of modern healthcare platforms,
including: real-time responsiveness; interoperability across multiple disparate systems; and adaptability
to evolving clinical workflows.

Apache Kafka is a popular platform for implementing EDA at scale, providing durable, high-throughput
event-streaming services and strong assurances related to fault-tolerance. When combined with Java-based
microservices engineered for modularity, independent deployments, and enterprise-grade reliability,
Kafka enables the creation of flexible healthcare platforms capable of processing continuous streams of
events in real-time, while also providing mechanisms for governance, auditing, and evolving the
underlying system infrastructure.

The objective of this study is to document and evaluate a production-ready Event Driven Architecture
implemented using Apache Kafka and Java microservices for a Health Sciences client. Specifically, this
study aims to:
(1) provide context for the architectural challenges experienced by modern healthcare systems
(i1) describe the design principles and implementation strategies employed in the proposed solution
(ii1) assess the operational benefits and drawbacks of the proposed solution based on experience from
actual deployments.

(Observability & Governance Layer
Monitoring = Tracing 7=\, Schema Registry &
(Prometheus, Grafana) ;_; ~ (Jaeger) = Policy Management
—_—— s §: R ()
kafka. e D
ata Lakehouse
EHR Systems 5 N Patient Data | " (Analytics)
S — - =]
Broker 1 | Topic: patient-events Co_nsumer
) L (Partitions 1-N) (Spring Boot) ———
Laboratory . - Clinical Decision

Information > (2 | Support

Systems Broker 2 Topic: lab-results (Al/ML)
—————— L (Partitions 1-N) J P N\ —_—
e N p N Lab Result o)

Medical Devices = Processor - Notification
|— Topic: kafka-event:

& Wearables \Broker 2 l "(’;’a';,ﬁ;o,fs elv;r; i II] (Quarkus) B Service

\ J L <) \ 5/ S J
Healthcare Data Apache Kafka Cluster Java Microservices Downstream
Producers (Event Bus) (Processors & Consumers) Systems

Fig. 1 Event driven architecture depicting healthcare data producers
I.LBACKGROUND
A. Apache Kafka
Apache Kafka is a distributed platform for event streaming, designed to enable large-scale, high-speed,
and highly available data exchange between different distributed systems. Kafka uses a publish/subscribe
model to manage data exchanges. A producer will send messages to specific topics that have been divided
into partitions to support concurrent processing of those messages. Consumers will then subscribe to

IJLRP23121533 Volume 4, Issue 12, December 2023 2

https://www.ijlrp.com/

@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

specific topics and process those messages in real-time. As a result, this design facilitates high levels of
decoupling between data producers and consumers, which is critical to build both scalable and fault-
tolerant applications.

One of the most important characteristics of Kafka is the ability to store data persistently in a log-based
format. Unlike many traditional message queues that store messages until they are consumed by a
consumer, Kafka stores messages in a log-based format until it reaches a predetermined time frame, based
on the producer's configuration. Once a producer has configured the amount of time that it wishes to retain
messages, messages will be stored in the log until that time period expires. Thereafter, the messages can
be deleted from the log. The persistent nature of storing messages in the log provides several benefits to
consumers including being able to replay previous messages that were processed by a consumer;
recovering from previous errors by replaying messages previously processed by a consumer; and
supporting downstream functions such as audit logs, compliance reports, and retrospective analytics. In
the health care industry where traceability and data lineage are paramount to meeting regulatory guidelines
and providing clinical accountability, the ability to store messages persistently does offer a number of
architectural advantages.

Kafka is also designed to operate at very high levels of availability and scale horizontally. Topic-
partitioning allows workload to be distributed among a group of brokers, while replication ensures that if
a broker fails, the data will still remain available to consumers. Leader-follower replication provides Kafka
clusters with the capability to continue to provide services and maintain data integrity even when some
portion of the cluster is unavailable due to failure. Due to its ability to process very high volumes of
continuous data, coming from a variety of data producing sources (i.e., Electronic Health Records,
Laboratory Instruments, Imaging Devices, Medical Devices), Katka is well-suited for use within
healthcare environments that require the processing of continuous data flows.

In addition to providing basic messaging capabilities, Kafka-based ecosystems typically include a range
of additional components and tools to manage schemas and govern how messages are serialized and
deserialized between producers and consumers. Schema registries and serialization frameworks are two
common types of tools used to ensure that there is a consistent contract for exchanging data between
producers and consumers. Additionally, these tools help support the evolutionary development of schemas
over time and reduce the likelihood of integration-related issues. In the health sciences environment, where
the need for interoperability between clinical and operational systems is high, these governance
capabilities are essential to maintaining the quality of data exchanged and sustaining the overall viability
of systems over extended periods of time.

B. Java Microservices

The use of java-based micro-services represents an architectural style that has many characteristics of a
distributed environment; however, instead of having monolithic applications; it has multiple small services
that perform different types of business functions.

Within health care organizations, there is typically a direct relationship between the type of event being
processed (i.e., a patient's information) and the type of business responsibility associated with the event.
For example, micro-services may be used to manage lab results, schedule appointments, and manage
billing. As a result of breaking down these separate business functions into discrete services, dependencies
across the entire system can be minimized allowing for services to be developed independently and
deployed and scaled separately.

Both Spring Boot and Quarkus provide a solid base from which java-based micro-services can be built in
corporate settings; both have similar goals and philosophies as well as similar features that support rapid
application development through pre-defined configurations, embedded runtime containers and first-class
support for message and stream-based platforms. Additionally, they both have a wide range of integration
points with other frameworks that are important for building mission-critical health-care based

IJLRP23121533 Volume 4, Issue 12, December 2023 3

https://www.ijlrp.com/

¢ International Journal of Leading Research Publication (IJLRP)

IJLRP E-ISSN: 2582-8010 e Website: www.ijirp.com e Email: editor@ijlrp.com

applications including but not limited to, security, configuration, observability and testing frameworks
that meet the very strict regulations and operational needs of the health-care industry.

Operational characteristics of java-based micro-services also have a number of similarities to cloud-native
and DevOps principles; specifically, their light-weight nature makes them ideal candidates for
containerization; while the ability to dynamically scale, monitor health, and manage the lifecycle of each
micro-service provides a highly scalable and highly available environment for deploying services.
Furthermore, using independent deployment pipelines for each service allows for the ability to deploy
services one at a time or in a group when desired, therefore reducing downtime and increasing overall
reliability of services.

When combined with an event-driven platform such as Apache Kafka, java-based micro-services can act
as reactive elements that process and produce events on an asynchronous basis. The communication
pattern between services eliminates the possibility of temporal coupling between services; and by doing
so reduces the likelihood of cascading failures; and allows each service to scale independently of other
services in order to handle workload as necessary. Ultimately, the combination of event-driven
communications and independent scalability of micro-services enables real-time management of clinical
and operational events in the health-care industry while providing the flexibility to include new workflows,
data sources, and analytical capabilities as needed.

i Asynchronous i [oeomsmooooseotoeg
iCommunication; LT IET TE TR Inventory Service

e AR] K Apache Kafka \ ' ey Cuails) I
] i ¥ Event Streaming Platform . E

Order Service ! y = Inventory DB |
(Java/Spring Boot) ! = (NoSQL) i

;L % Topic: orders.created

T 1
.~ i [§g Topic: inventory.updated }4——| i‘ ______________________ E

Notification Service !

R, (saL) ! (Java/Micronaut)
“-1 Service , g ------------ {§g Topic: payment.processed] ' !
 Boundary | : S Notification DB!
o i - (SQL)
i TR e Lo 5 ASYNCIONOUS i), === =rs= =S oo = omm
 Deploymant Ui | Communication | [Legend
1 Payment Service g oty

&€ inventory B (NosaL)

(Java)
1 _! Independent Deployment Unit

Fig 2. Java Microservices in an event driven system

III.LARCHITECTURE OVERVIEW

This method is an entirely event driven architecture (EDA). It utilizes an apache kafka cluster as the core
event bus, providing scalable, asynchronous, and fault-tolerant integration of various healthcare
information systems. Every major change of state throughout the healthcare environment is captured and
sent through the event bus. The events consist of a wide variety of clinical and operational activities
including changes to patient demographics, test results and lab reports, telemetry from medical devices,
billing alerts, and appointment scheduling and coordination. The events themselves become the
fundamental building blocks of the system architecture, facilitating the real-time exchange of data while
also decreasing both temporal and structural dependencies between applications and services.

To further support the EDA architecture model, it is divided into two primary tiers; the infrastructure tier
and the application tier. The Kafka cluster serves as the core event bus, the Java-based microservices
function as the domain specific event processors, and the cross-cutting services function as the schema
governance and operational monitoring services. This compartmentalization provides a level of
independence to the development of individual components, allows for incremental improvement of the

IJLRP23121533 Volume 4, Issue 12, December 2023 4

https://www.ijlrp.com/

@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

overall system, and reduces the risk to the rapidly evolving healthcare environment when making
modifications to the system.

A. Kafka Cluster and Event Bus

At the core of the architecture is a multi-node Apache Kafka cluster designed to provide a highly available,
fault-tolerant, and horizontally scalable solution for the storage and delivery of events. Healthcare
information systems produce events to Kafka topics which are then stored in multiple replicates of the
same partition that are distributed across the multiple nodes of the Kafka cluster. Replication within Kafka
ensures that no matter what happens to a node or its connectivity to other nodes, there will always be
durable copies of all the data to prevent loss due to failure.

In addition to being a durable system of record for healthcare events, the use of Kafka provides a
decoupling of event producers from consumers both in time and operationally. Producers of events do not
need to know anything about how their events are processed downstream and do not have to wait for those
events to be processed. Consumers of events can independently subscribe to topics they are interested in
and can choose to process those events at a time that suits them best. This decoupling is especially
important in a healthcare environment, because when some downstream systems may require downtime,
scalability adjustments, or experience partial outages, they should not negatively impact the ability of
upstream clinical processes to continue uninterrupted.

B. Kafka Topics and Domain-Oriented Event Partitioning

Events generated by healthcare information systems are organized into Kafka topics based upon domain-
driven and functional boundaries, which reflect important business concepts rather than arbitrary technical
limitations. Examples of these types of topics include events related to patients, events related to laboratory
and diagnostic results, streams of events related to medical device data, financial alert events, and
scheduling-related events. Organizing events around domain-oriented boundaries increases clarity and
understanding, improves access control, and enables individual event streams to scale in response to
demand.

Techniques used to partition events in Kafka are carefully selected to optimize throughput, scalability, and
compliance with ordering constraints. For example, for workflows requiring sequential processing, such
as handling patient-centric events, events are assigned to Kafka partitions using stable identifiers so that
they can be consumed in order, but still allow for parallel processing of different entities. This allows for
maintaining correct behavior without sacrificing performance.

C. Java-Based Microservices as Event Processors

Java-based microservices represent the event processor layer of the architecture. Each microservice
consumes events from one or more Kafka topics, applies domain-specific business rules to determine how
to process the events, stores the results in appropriate data sources, and generates additional events to
signal subsequent actions or states of the entity represented by the original event. When possible,
microservices are implemented to be stateless, which provides flexibility in deployment and simplifies
recovery from failures.

Because microservices consume events asynchronously, the slow or non-responsive status of a
downstream service cannot impede the processing of events by an upstream service, thus preventing the
occurrence of cascading failures. Additionally, this design aligns well with the needs of the healthcare
environment where the continuous processing of large volumes of data streams is crucial.

IV.IMPLEMENTATION DETAILS

This section will describe how the proposed event-driven architecture will be executed; specifically, how
it can be used to mitigate many of the typical engineering problems found in large-scale health care
systems (i.e., scalability, operational complexity, fault separation, etc.) and provide better data integrity.
A. Kafka Cluster Deployment

To help resolve scalability and availability issues in point-to-point and synchronous messaging systems
that are commonly found in large-scale health care systems, a multi-node Apache Kafka cluster is

IJLRP23121533 Volume 4, Issue 12, December 2023 5

https://www.ijlrp.com/

¢ International Journal of Leading Research Publication (IJLRP)

IJLRP E-ISSN: 2582-8010 e Website: www.ijirp.com e Email: editor@ijlrp.com

established. Data loss and service disruptions caused by broker failures are resolved through replication
among Kafka brokers. To reduce operational complexity, stream line cluster management, and eliminate
another possible failure point at scale, the setup uses Kafka's ZooKeeper-free KRaft mode.

Through topic partitioning, scalability and performance issues related to throughput limits and the ability
to process events concurrently are also addressed. In this manner, the system does not have a single-
consumer bottleneck, and it provides predictable performance as the volume of events grows.

B. Java Microservices

Healthcare applications typically have tightly coupled, monolithic architectures. To address this issue,
Java microservices are built using Spring Boot and Kafka client libraries. Each service is built to be
stateless and avoid relying on in memory state, so they can be scaled horizontally and recover quickly if
they fail.

Idempotent event handlers were implemented to handle duplicate messages being delivered, a common
problem in distributed event driven systems. This ensures that data integrity remains intact when there is
a need to retry or reprocess messages. Additionally, services interact with both relational and NoSQL
databases to support different patterns of accessing health care data, and the strict separation of the API
layer, business logic layer, and data layer minimize code complexity and improve long term
maintainability.

C. Event Flow Design

The goal of designing the event flow was to remove synchronous dependencies and improve fault
isolation. Upstream systems such as EHR platforms, medical devices, and workflow engines generate
events that are stored by Kafka in replicated partitions to ensure durability. These events are
asynchronously consumed by Java microservices, which perform domain logic and store changes in their
states. Afterward, downstream events are emitted to continue the next set of work flows. This
asynchronous model of executing events ensures that a slow or failing component cannot cause its failures
to be propagated to other parts of the system.

End-to-End Event Flow

Microservice
Consumer Group

Event Producer Kafka Cluster

: Microservice
1. Produce Event g Kafka Topic Instance 4. Emit Event
—— - >

_ Replicated Log Milcroservice
nstance

Microservice
2. Store Event » 3.Consume Event _

Downstream Systems

A

Async Event

Parallel Processing
==

Message Retention & Retry Consumer Group External Systems
Fault Isolation Non-Blocking Execution
Retry on Failure Async Event Handling

Fig. 3 A sequence diagram showing end to end event flow

D. Operational Management & Observability
Blind spots in operations are addressed through a complete observability stack. Dashboards created with
Prometheus and Grafana provide insight into throughput, consumer lag, and error rates, enabling

IJLRP23121533 Volume 4, Issue 12, December 2023 6

https://www.ijlrp.com/

@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

identification of performance degradation before it has an impact. Logging centrally through ELK or
OpenSearch enables rapid determination of the root cause of issues across distributed services.

Schema management is directly responsible for addressing the issue of inconsistent data and integration
vulnerabilities. Schema validation for Avro or JSON schemas enforced by a central schema registry
ensures that producers and consumers adhere to compatible event contracts. The controlled evolution of
the schema eliminates the possibility of breaking changes impacting downstream services, a critical
requirement in health care environments where multiple teams and vendors are integrated.

V.BENEFITS AND CHALLENGES

Implementing an Event-Driven Architecture (EDA) using Apache Kafka as messaging middleware and
Java microservices provides many tangible benefits for healthcare platforms; however, EDA also
introduces engineering challenges that must be properly managed. This section will outline the major
benefits realized during implementation, and highlight some of the major challenges related to event-
driven healthcare systems.

A. Benefits

1. Scalability: The use of Kafka topic partitioning combined with parallel consumption of microservices
enables the system to handle large volumes of high-throughput events with consistent performance. When
data volume grows from clinical systems, devices or operational processes, the scalable nature of the
architecture allows for horizontal scaling by simply adding additional partitions or service instances
without needing to modify the structure of the system.

2. Fault Tolerance: Kafka's replication capabilities provide durable event storage and protection against
data loss when Kafka brokers fail. Additionally, microservices deployed at the application layer run
independent of each other, providing fault isolation and protecting against failure propagation by allowing
for individual microservices to restart or scale without affecting the operation of the rest of the system.

3. Decoupling/Extensibility: Removing point-to-point integrations reduces system coupling and
integration complexity. New producers or consumers can be added to the system without modifying
existing upstream systems by simply subscribing to existing topics, thereby increasing the speed at which
the system evolves and new healthcare applications are integrated.

4. Real-Time Processing: With minimal latency, events flow through the platform and enable near-real
time updates to both clinical and operational workflows. Near-real time updating supports timely decision
making, improves the experience of clinicians, and increases the overall agility of the system.

B. Challenges

1. Message Ordering: Ensuring the correct order of events for patient-centric workflows is a major
challenge. While partitioning strategies may help maintain the order of events for related events, such
partitioning requires careful key design, which may limit parallelism.

2. Duplicate Event Delivery: Due to retry attempts or failures, event-driven architectures may deliver
messages multiple times. Without proper safeguards in place, this could create inconsistent data or require
the repeated processing of the same message.

3. Idempotent Service Design: To address the issue of duplicate deliveries, microservices should
implement idempotent processing logic. However, implementing idempotence across multiple workflows
increases implementation complexity and requires comprehensive testing.

4. Schema Evolution: Data models used in healthcare evolve frequently to reflect changes in clinical
standards or business requirements. Providing backward compatibility for both producers and consumers
in managing schema evolution while maintaining integrity of the data model requires discipline in
governance and versioning practices.

5. Distributed Transaction Coordination: Coordinating multi-step workflows across distributed services
without traditional transactional boundaries creates significant challenges. The eventual consistency and
compensating actions must be carefully designed to ensure accurate results in complex healthcare
processes.

IJLRP23121533 Volume 4, Issue 12, December 2023 7

https://www.ijlrp.com/

@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

VLRESULTS AND DISCUSSION

Performance, reliability and adaptability were all improved through an event driven architecture adopted
into the healthcare space. Processing times for the end-to-end ingestion of laboratory test results decreased
by approximately 40% in comparison to the original processing times (testing and production) primarily
because of the high-throughput nature of Kafka's event streaming and the fact that microservices are
consuming events simultaneously.

The system experienced very little downtime during maintenance or when a service failed. The continuous
availability of critical data streams was ensured through Kafka's failover and replication, combined with
the independently restartable and stateless nature of each microservice. Tests to determine scalability of
the system found that throughput increased in a near-linear fashion as volume of events increased; this
was achieved by increasing Kafka partitions and adding microservice instances without changing the
design of the application.

In addition to enhancing performance and reliability, the decoupling of data producer and consumer
through an event driven paradigm also provided greater agility in integrating new data producers and
consumers. By creating new applications using existing event contracts, the necessity to add point-to-point
integration between systems was removed. Overall, these findings support the use of a Kafka-based event-
driven architecture as a solid foundation for building scalable, reliable and adaptable healthcare services.

Metric Pre-EDA Kafka-based EDA | Improvement
Architecture

Lab result processing [2.5 seconds 1.5 seconds ~40% reduction

latency (avg)

System availability 99.5% 99.99% Reduced

downtime

Peak event throughput 12,000 events/sec 19,000 events/sec ~58% increase

Time to onboard new |~3 weeks <1 week Faster integration

producer

Table 1. Performance Comparison Before and After EDA Adoption

VII.CONCLUSION

The paper shows how using Event-Driven Architecture (EDA) based on Java Microservices and Apache
Kafka creates an integration-friendly, scalable, and maintainable platform for Health Science
organizations working within environments where there is large amounts of data and high time sensitivity.
EDA has proven to provide a viable solution to the problems associated with traditional tightly-coupled
synchronous Healthcare systems by breaking down system components into individual components that
are able to communicate asynchronously, and by allowing interaction between clinical and operational
activities to be represented as a stream of events that cannot be changed. The results have shown a
substantial improvement in all three aspects of system operation - i.e., process efficiency, uptime, and
integration agility, along with the required dependability and reliability needed for successful operation
of a healthcare organization.

In addition to the improved processing speed, system availability, and integration speed, the module-
based, event-based architecture also provides long-term flexibility and adaptability to changes in both
healthcare interoperability standards, regulatory requirements, and new digital health technologies. The
use of well defined event contracts, and independently deployable services allows the platform to easily
modify its behavior in response to new or changing conditions in the healthcare environment, which makes
the architecture a good candidate for providing a stable base for future development of healthcare systems.

IJLRP23121533 Volume 4, Issue 12, December 2023 8

https://www.ijlrp.com/

@ International Journal of Leading Research Publication (IJLRP)
IJLRP

E-ISSN: 2582-8010 e Website: www.ijlrp.com e Email: editor@ijlrp.com

The next phase of development will focus on developing additional analytical and intelligent capabilities
for the platform. Areas of development include incorporating advanced CEP methodologies, utilizing
Kafka Streams and ksqlDB for real-time analytics, automating the process of evolving schemas and
governing processes related to the evolving schema, and developing Al-based anomaly detection
capabilities on the event streams to enable better predictive monitoring, clinical insight, and operational
decision making.

REFERENCES:

1.

10.

11.

A. Rezaee, F. Rezvani, and M. H. F. Zarandi, "Big data analytics in healthcare: a systematic
review," Computer Methods and Programs in Biomedicine, vol. 179, p. 104986, 2019. [Online].
Available: https://doi.org/10.1016/j.cmpb.2019.104986

S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, "Big data in healthcare: management,
analysis and future prospects," Journal of Big Data, vol. 6, no. 1, pp. 1-25, 2019.

A. K. M. B. Haque et al., "Semantic Web in Healthcare: A Systematic Literature Review of
Application, Research Gap, and Future Research Avenues," International Journal of Clinical
Practice, vol. 2022, pp- 1-27, Oct. 2022. [Online]. Available:
https://doi.org/10.1155/2022/6807484

D. Bender and K. Sartipi, "HL7 FHIR: An Agile and RESTful approach to healthcare information
exchange," in Proc. 26th IEEE International Symposium on Computer-Based Medical Systems,
2013, pp. 326-331.

J. Kreps, N. Narkhede, and J. Rao, "Katka: A Distributed Messaging System for Log Processing,"
in Proc. 6th International Workshop on Networking and Databases (NetDB), Athens, Greece,
2011, pp. 1-7.

G. Shapira, T. Palino, V. Sivaram, and K. Petty, Kafka: The Definitive Guide: Real-Time Data and
Stream Processing at Scale, 2nd ed. Sebastopol, CA, USA: O'Reilly Media, 2021.

N. Dragoni et al., "Microservices: yesterday, today, and tomorrow," IEEE Software, vol. 35, no. 3,
pp- 80-87, May/Jun. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8354433

C. Richardson, Microservices Patterns: With examples in Java. Shelter Island, NY, USA: Manning
Publications, 2018.

S. Newman, Building Microservices: Designing Fine-Grained Systems, 2nd ed. Sebastopol, CA,
USA: O'Reilly Media, 2021.

M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems. Sebastopol, CA, USA: O'Reilly Media, 2017.

J. Turnbull, Monitoring with Prometheus. Sebastopol, CA, USA: O'Reilly Media, 2018.

IJLRP23121533 Volume 4, Issue 12, December 2023 9

https://www.ijlrp.com/
https://doi.org/10.1016/j.cmpb.2019.104986
https://doi.org/10.1016/j.cmpb.2019.104986
https://doi.org/10.1155/2022/6807484
https://doi.org/10.1155/2022/6807484
https://doi.org/10.1155/2022/6807484
https://ieeexplore.ieee.org/document/8354433
https://ieeexplore.ieee.org/document/8354433

