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Abstract 

Estimating customer potential is crucial for organizations, especially in the cloud computing 

domain. Traditional methods often rely on total addressable spend (TAS) estimates, which can be 

inaccurate or incomplete. This paper explores the use of semi-supervised learning techniques [1] to 

identify customers with untapped potential on the cloud. By leveraging external datasets and 

positive-unlabeled (PU) learning algorithms, we aim to improve the accuracy of customer potential 

estimation and provide a more effective approach for finance organizations in the cloud space. Our 

results based on a public data set demonstrate that PU learning models, particularly those utilizing 

technographic embeddings and bagging techniques, can significantly outperform traditional TAS-

based methods. 
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1. Introduction 

Total addressable spend (TAS) is a vital metric for sales and financial planning in many organizations. 

Accurate TAS estimation allows businesses to identify opportunities, allocate resources effectively, and 

optimize revenue generation. However, traditional methods for estimating TAS can be unreliable, leading 

to discrepancies and suboptimal decision-making. 

 

In the context of cloud computing, accurately assessing customer potential is particularly challenging. 

Traditional TAS estimates may fail to capture the dynamic nature of cloud adoption and the diverse needs 

of customers. In our analysis of a large public cloud data set's spend, we identified significant 

inconsistencies in existing TAS estimates. Specifically, we found that a substantial percentage of TAS 

estimates for large customers were below their actual cloud revenue, indicating a significant 

underestimation of their potential. Our analysis found that 37% of existing TAS estimates for large 

customers are below the large public cloud data set's spend revenue. A key challenge of estimating the 

quality of a TAS estimate is that we do not know the true TAS of a customer. We consider a customer’s 

TAS plausible if it meets three criteria – TAS should be greater than customer’s cloud revenue, TAS 

should be less than customer’s IT budget, and TAS should be less than the company revenue of the 

customer.  

  

A key challenge in evaluating the quality of TAS estimates is the absence of ground truth data. We lack 

definitive knowledge of a customer's true TAS, making it difficult to assess the accuracy of existing 

estimates. To address this challenge, we propose a semi-supervised learning approach that leverages 

external datasets and machine learning techniques to identify customers with untapped potential for a large 

public cloud data set's spend. 
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Our approach focuses on identifying medium-sized customers who share similar external data attributes 

with existing large customers. We hypothesize that customers with similar technology stacks have similar 

cloud computing needs. By applying positive-unlabeled (PU) learning algorithms, we can learn from the 

available data and predict which customers have the potential to become large customers if they fully 

utilize cloud services. 

 

The goal of this research is to develop a model that outperforms existing TAS estimates in identifying 

customers with high growth potential for cloud customers. By leveraging external datasets and advanced 

machine learning techniques, we aim to provide a more accurate and effective approach for customer 

potential estimation in the cloud computing domain. 

 

2. Related Work 

Semi-supervised learning has emerged as a powerful approach for addressing classification problems with 

limited labeled data. PU learning, in particular, has gained traction in various domains where only positive 

and unlabeled data are available. This section reviews relevant literature on semi-supervised learning, PU 

learning, and their applications in customer relationship management and sales potential estimation. 

 

2.1 Semi-Supervised Learning 

Semi-supervised learning leverages both labeled and unlabeled data to improve the performance of 

machine learning models. Several techniques have been developed, including self-training, co-training, 

and label propagation. These methods aim to exploit the underlying structure of the data to infer labels for 

the unlabeled instances. Self-training involves iteratively training a classifier on labeled data, predicting 

labels for unlabeled data, and adding the most confidently predicted unlabeled instances to the labeled set 

[3]. Co-training uses multiple classifiers trained on different feature sets to iteratively label unlabeled data 

[11]. Label propagation aims to propagate labels from labeled instances to unlabeled instances based on 

the similarity between them [9]. 

 

More recently, graph-based semi-supervised learning methods have gained popularity. These methods 

represent data points as nodes in a graph, with edges connecting similar instances. Labels are then 

propagated through the graph, allowing unlabeled instances to infer their labels from their neighbors [3]. 

Another line of research has focused on using generative models for semi-supervised learning. These 

models learn the underlying data distribution and use it to generate labels for unlabeled instances [12]. 

 

2.2 Positive-Unlabeled Learning 

PU learning is a specific type of semi-supervised learning that deals with datasets containing only positive 

and unlabeled examples. This scenario arises in various applications, such as identifying potential 

customers, detecting fraudulent transactions, and discovering new drug targets. PU-learning is a natural 

fit in medical applications, where a very small set of genes are known to cause or influence specific 

diseases, and very little is known about other genes. Another typical example is email spam identification 

where users identify some emails as spam, which make up the positive class, and the rest are considered 

unknown. 

 

Various algorithms have been proposed for PU learning, including: 

● Naive PU learning: This is the most obvious application of PU learning where we treat all 

unlabeled examples as negatives and train a traditional classifier that, in effect, predicts Pr(s=1∣x). The 

classifier assigns a probability to each of the points (both positive and unlabeled), and among the unlabeled 

data points, the ones with the highest score are likely to be positives. This approach is simple but can be 

biased due to the incorrect assumption that all unlabeled examples are negative [4]. 
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● Two-step approach: Identifying reliable negative examples from the unlabeled set and then training 

a classifier using both positive and negative examples. This method aims to improve the accuracy of the 

classifier by explicitly identifying negative examples. The performance of this approach depends on the 

accuracy of the reliable negative identification step [5]. 

● PU bagging: This algorithm makes use of bagging. It involves splitting the unlabeled data 

randomly into two sets. We build a naïve classifier with one of the sets (“bootstrap set”) and predict on 

the other set (out-of-bag set or OOB). This process is repeated a fixed number of times, and a series of 

binary classifiers are fitted until each of the unlabeled observations has a set of OOB scores. The OOB 

scores are then averaged to arrive at the final score for all the unlabeled data points. [10]. 

● Elkanot classifier: Adjusts probabilities to account for the class imbalance inherent in PU learning 

[4]. This method modifies the output probabilities of the classifier to account for the fact that the proportion 

of positive examples in the unlabeled set is unknown. By adjusting the probabilities, the classifier can 

provide more accurate predictions [2]. 

● Cost-sensitive PU learning: Incorporating costs to penalize misclassification of positive and 

unlabeled examples. This approach aims to address the class imbalance problem in PU learning by 

assigning different costs to misclassifying positive and unlabeled examples. By minimizing the cost, the 

classifier can achieve better performance [Joshi et al., 2001]. 

 

2.3 Applications in Customer Relationship Management 

Semi-supervised learning techniques have been applied in customer relationship management to address 

various tasks, such as customer segmentation, churn prediction, and sales lead generation [8]. These 

methods can leverage both customer data and external datasets to improve the accuracy of predictions and 

provide valuable insights for businesses. 

 

[6] proposed a PU learning approach for classifying text documents and showed its effectiveness in 

identifying relevant documents from a large collection of unlabeled documents. [7] applied one-class 

SVMs for document classification, which is another technique suitable for PU learning scenarios. 

 

3. Model Overview 

We propose a ML model as a TAS alternative to identify medium size customers who share external data 

attributes of existing large customers. Our model leverages machine learning techniques to identify 

medium-sized customers who share external data attributes with existing large customers of a large public 

cloud data set's spend. The model predicts whether these customers would at least be large (potentially 

large) if they chose Cloud for their current needs. Our rationale for focusing on external data sets, 

specifically technographics, is the underlying hypothesis that customers who have similar tech stacks share 

similar cloud computing needs all else equal. The model’s goal is to achieve better performance versus 

existing TAS estimates. 

 

4. Data 

The primary dataset used captures customer–product installation relationships (technographic data) across 

a broad set of products, complemented by aggregate financial indicators such as revenue and IT budget. 

Dimensionality reduction techniques such as principal component analysis (PCA) are employed to extract 

features from the technographic data. 

 

5. Methodology 

Given we know the true large customers, and the goal is to identify potential large customers from the 

unlabeled data set of medium customers, standard supervised learning techniques cannot be applied 

because of the lack of negative labels. Given that we know the true large customers, and the goal is to 

identify potential large customers from the unlabeled dataset of medium-sized customers, standard 
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supervised learning techniques cannot be applied because of the lack of negative labels. We do not know 

which of the medium customers are potential large customers and which are true medium customers. We 

apply PU-learning algorithms to learn from the positive and unlabeled datasets. We treat all large 

customers on a large public cloud data set's spend as true positives and all medium customers as unlabeled. 

 

Within the PU-learning framework, we represent the input as (x,y,s) where x is the input feature data, y is 

the true label (potential large customer) and s indicates if the observation is labeled or not (true large 

customer). Within the PU-learning framework, we represent the input as (x,y,s) where x is the input feature 

data, y is the true label (potential large customer) and s indicates if the observation is labeled or not (true 

large customer). The fact that only positive observations are labeled can be expressed as Pr(s=1∣x,y=0)=0. 

The fact that only positive observations are labeled can be expressed as Pr(s=1∣x,y=0)=0. Our goal is to 

learn a classifier that approximates a function f(x)which is as close to Pr(y=1∣x) as possible. Our goal is 

to learn a classifier that approximates a function f(x) which is as close to Pr(y=1∣x) as possible. However, 

this can only be done with a certain set of assumptions about which of the positive examples are labeled. 

These assumptions are related to the labeling mechanism and how the unlabeled examples are treated. 

These assumptions are related to the labeling mechanism and how the unlabeled examples are treated.  

 

We implemented three different PU techniques with a Random Forest classifier as the base classifier: 

1. Naive PU classifier - This is the most obvious application of PU learning where we treat all 

unlabeled examples as negatives and train a traditional classifier that in effect predicts Pr(s=1∣x). The 

classifier will assign a probability to each of the points (both positive and unlabeled) and among the 

unlabeled data points, the ones with the highest score are likely to be positives. 

2. PU bagging technique - This is a more sophisticated algorithm that makes use of bagging. It 

involves splitting the unlabeled data randomly into two sets. We build a naïve classifier with one of the 

sets (“bootstrap set”) and predict on the other set (out-of-bag set or OOB). This process is repeated a fixed 

number of times and a series of binary classifiers are fitted until each of the unlabeled observations has a 

set of OOB scores. The OOB scores are then averaged to arrive at the final score for all the unlabeled data 

points. 

3. Label propagation techniques - This algorithm starts off by training with the known positives and 

a “reliable” set of negatives from the unlabeled dataset. These reliable sets of negatives can either be based 

on domain knowledge or an output of the Naive classifier. The algorithm then iteratively labels the 

unlabeled observations based on rules around predicted probabilities. If the predicted probabilities for any 

of the unlabeled are above or below the range of known positives, then label them as negatives and 

positives respectively. This process is repeated until a stopping criterion is met. 

 

6. Model Evaluation 

To evaluate model performance, the dataset was partitioned in half, and a subset of observations 

representing medium-sized entities was masked to simulate a target scenario. This masking created a 

controlled class imbalance, with a hidden large-to-medium entity ratio of approximately 1:40, reflecting 

an assumed prior distribution. Model evaluation focused on the ability to correctly identify hidden large 

entities within the masked subset. Performance metrics were averaged across multiple bootstrapped 

samples, each drawing a different set of hidden large entities to ensure robustness. 

The proposed model was compared against baseline approaches that relied solely on high-level 

organizational attributes such as estimated spend or budget indicators. Evaluation metrics included 

average precision, as well as precision at selected recall thresholds. Precision was defined as the proportion 

of predicted large entities that were indeed large, while recall referred to the fraction of the total hidden 

large entities that were successfully identified. As both metrics depend on the decision threshold used to 

classify an entity as a potential large target, average precision was used to summarize the trade-off across 

thresholds by computing the weighted mean of precision values over recall increments. 
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Due to convergence challenges encountered with certain techniques (e.g., label propagation), only results 

from naïve and ensemble-based positive-unlabeled (PU) learning methods were reported. As summarized 

in Table 1, the ensemble PU model trained with collaborative-filtering–derived embeddings achieved the 

highest average precision, substantially outperforming the baseline. When principal component analysis 

(PCA) embeddings were used instead, the model still achieved notable gains, albeit slightly lower. 

Ensemble learning provided a performance boost over the naïve approach when collaborative-filtering 

embeddings were used; however, this improvement was not observed when PCA-based features were 

employed. Additionally, models trained without detailed behavioral or technographic inputs—using only 

coarse financial attributes—underperformed relative to the baseline, achieving significantly lower average 

precision. 

 

Table 1 Model performance versus baseline 

Model PU technique Average precision 

Model with Collaborative Filtering embeddings Bagging 0.5 

Model with Collaborative Filtering embeddings Naïve  0.46 

Model with PCA embeddings Bagging 0.38 

Model with PCA embeddings Naïve 0.39 

Model without embeddings Naïve  0.2 

Benchmark - TAS  0.23 

Benchmark - IT Budget  0.17 

 

Figure 1 Precision/Recall curves 

 
 

 

7. Conclusion and Future Work 

While the current model shows a significant improvement over using TAS or IT budget, there is room for 

improvement in the areas of customer data embeddings, PU learning algorithms and evaluation. The 

current model shows a significant improvement over using TAS or IT budget alone. There remains room 
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for improvement in the areas of customer data embeddings, PU learning algorithms, and evaluation. 

Customer embeddings can be enhanced by augmenting external datasets with internal data sets that 

represent cloud behavior of customers. The current model uses a random forest classifier as the base 

classifier for the PU-learning methods. The algorithm evaluation can be made more robust by evaluating 

reliable negatives in addition to the positives. These reliable negatives can be gathered from domain 

experts. These reliable negatives can be gathered from domain experts. As mentioned earlier in the 

evaluation stage, the sensitivity analysis was done by keeping P/U and the hidden ratio the same. However, 

these can be different, and the model needs to be evaluated for the scenarios where these ratios are 

different. We have approached this problem from a PU perspective but with the help of a reliable set of 

negatives, PNU (positive-negative-unlabeled) techniques can also be applied and compared against the 

current model’s performance.  

Our framework to apply PU-learning to customer potential can be extended to other areas of interest. Our 

framework to apply PU-learning to customer potential can be extended to other areas of interest. We have 

multiple use-cases where we know a small set of customers who meet success criteria that may include 

early service adoption, time-series usage patterns that show a definite trend, and workload adoption and 

growth. We have multiple use-cases where we know a small set of customers who meet success criteria 

that may include early service adoption, time-series usage patterns that show a definite trend, and workload 

adoption and growth. 

 

References 

1. Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-Supervised Learning. IEEE Transactions on 

Neural Networks, 17(3), 683-697. 

2. Bekker, J., & Davis, J. (2020). Learning from Positive and Unlabeled Data: A Survey. Data Mining 

and Knowledge Discovery, 34(3), 719-760. 

3. Zhu, X. (2005). Semi-Supervised Learning Literature Survey. University of Wisconsin-Madison, 

Department of Computer Sciences. 

4. Elkan, C., & Noto, K. (2008). Learning Classifiers from Only Positive and Unlabeled Data. 

Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, 213-

220. 

5. Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2003). Partially Supervised Classification of Text Documents. 

Proceedings of the 20th International Conference on Machine Learning, 488-495. 

6. Li, X., & Liu, B. (2003). Learning to Classify Texts Using Positive and Unlabeled Data. Proceedings 

of the 19th International Conference on Computational Linguistics, 426-432. 

7. Manevitz, L. M., & Yousef, M. (2001). One-Class SVMs for Document Classification. Journal of 

Machine Learning Research, 2, 139-154. 

8. Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data: An Introduction to Data 

Mining. John Wiley & Sons. 

9. Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with Local and 

Global Consistency. Advances in Neural Information Processing Systems, 16, 321-328. 

10. Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer. 

11. Blum, A., & Mitchell, T. (1998). Combining Labeled and Unlabeled Data with Co-Training. 

Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 92-100. 

12. Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with 

deep generative models. In Advances in neural information processing systems (pp. 3581-3589). 

 

 

 

https://www.ijlrp.com/
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://link.springer.com/article/10.1007/s10994-020-05877-5
https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
https://cseweb.ucsd.edu/~elkan/posonly.pdf
https://cseweb.ucsd.edu/~elkan/posonly.pdf
https://cseweb.ucsd.edu/~elkan/posonly.pdf
https://cseweb.ucsd.edu/~elkan/posonly.pdf
https://cseweb.ucsd.edu/~elkan/posonly.pdf
https://www.cs.uic.edu/~liub/S-EM/unlabelled.pdf
https://www.cs.uic.edu/~liub/S-EM/unlabelled.pdf
https://www.cs.uic.edu/~liub/S-EM/unlabelled.pdf
https://www.cs.uic.edu/~liub/S-EM/unlabelled.pdf
https://www.cs.uic.edu/~liub/publications/ijcai03-textClass.pdf
https://www.cs.uic.edu/~liub/publications/ijcai03-textClass.pdf
https://www.cs.uic.edu/~liub/publications/ijcai03-textClass.pdf
https://www.cs.uic.edu/~liub/publications/ijcai03-textClass.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://link.springer.com/book/10.1007/978-3-319-14142-8
https://dl.acm.org/doi/10.1145/279943.279962
https://dl.acm.org/doi/10.1145/279943.279962
https://dl.acm.org/doi/10.1145/279943.279962
https://dl.acm.org/doi/10.1145/279943.279962
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf

